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ABSTRACT

DIMENSION REDUCTION FOR TREE-STRUCTURED DATA

Durak, Erdı̇nç

M.S., Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Mustafa Kemal Tural

Co-Supervisor: Prof. Dr. Cem İyigün

September 2021, 97 pages

Statistical analysis of tree-structured data is one of the exciting research areas with

expanding application areas. In classical data analysis, the data objects are points in

the Euclidean space, whereas they are trees in the analysis of tree-structured data.

The replacement of points in the Euclidean space with trees brings in additional com-

plexity in data analysis and necessitates the use of dimension reduction techniques.

In this study, we aim to develop dimension reduction techniques for tree-structured

data where each tree is rooted and labeled. We consider two classical dimension

reduction techniques; namely, the principal component analysis (PCA) and multidi-

mensional scaling (MDS), and adapt them to tree-structured data. Unlike a previous

study on the PCA for tree-structured data, the PCA techniques proposed in this thesis

maximize a measure of variance. Computational experiments on randomly generated

data and real life data show the superiority of the proposed PCA techniques over the

existing one.

In the literature, there is no study that performs MDS on tree-structured data to project

them in the tree space. In this direction, we propose the first MDS method for tree-
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structured data, where the edges of the trees are considered as the dimensions. In

the proposed MDS method, the aim is to keep the Hamming distances between pairs

of trees proportionally similar. For this purpose, we propose a mixed-integer lin-

ear programming model which finds the edges to be kept in an optimal way and

heuristic methods where the edges are greedily selected one by one. Computational

experiments show that the proposed MDS methods are successful in keeping useful

information as high clustering accuracy is achieved with only a fraction of the edges.

To be able to perform the computational experiments in a systematic way, a random

tree generator algorithm is developed. This algorithm is able to generate clusters of

trees with different skewness and density parameters. By changing these parameters

systematically, we are able to understand the strength and weaknesses of the proposed

methods.

Keywords: tree-structured data, dimension reduction, statistical analysis on graphs,

principal component analysis, multidimensional scaling

vi



ÖZ

AĞAÇ YAPILI VERİLER İÇİN BOYUT İNDİRGEME

Durak, Erdı̇nç

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Mustafa Kemal Tural

Ortak Tez Yöneticisi: Prof. Dr. Cem İyigün

Eylül 2021 , 97 sayfa

Ağaç yapılı verilerin istatistiksel analizi, genişleyen uygulama alanlarıyla ilgi çekici

araştırma alanlarından biridir. Klasik veri analizinde, veri nesneleri Öklid uzayındaki

noktalarken, ağaç yapılı veri analizinde ağaçlardır. Öklid uzayındaki noktaların ağaç-

larla değiştirilmesi, veri analizinde ek karmaşıklık getirir ve boyut indirgeme teknik-

lerinin kullanılmasını gerektirir. Bu çalışmada, her ağacın köklü ve etiketli olduğu

ağaç yapılı veriler için boyut indirgeme teknikleri geliştirmeyi hedefliyoruz. İki kla-

sik boyut küçültme tekniğini ele alıyoruz; temel bileşen analizi (PCA) ve çok boyutlu

ölçekleme (MDS), ve bunları ağaç yapılı verilere uyarlıyoruz. Ağaç yapılı veriler için

PCA üzerine yapılan önceki bir çalışmanın aksine, bu tezde önerilen PCA teknikleri

bir varyans ölçüsünü maksimize ediyor. Rastgele oluşturulmuş veriler ve gerçek ha-

yat verileri üzerinde yapılan hesaplama deneyleri, önerilen PCA tekniklerinin mevcut

olana göre üstünlüğünü göstermektedir.

Literatürde ağaç yapılı veriler üzerinde MDS gerçekleştirip ağaç uzayına yansıtan bir

çalışma bulunmamaktadır. Bu doğrultuda, ağaçların kenarlarının boyut olarak kabul

edildiği ağaç yapılı veriler için ilk MDS yöntemini öneriyoruz. Önerilen MDS yön-
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teminde amaç, ağaç çiftleri arasındaki Hamming uzaklıklarını orantısal olarak benzer

tutmaktır. Bu amaçla, tutulacak kenarları optimal bir şekilde bulan bir karma tamsa-

yılı doğrusal programlama modeli ve kenarların açgözlülükle tek tek seçildiği sez-

gisel yöntemler önermekteyiz. Hesaplamalı deneyler, önerilen MDS yöntemlerinin,

kenarların yalnızca bir kısmı ile yüksek kümeleme doğruluğu elde edildiğinden ya-

rarlı bilgileri tutmada başarılı olduğunu göstermektedir.

Hesaplamalı deneyleri sistematik bir şekilde yapabilmek için bir rastgele ağaç üreteci

algoritması geliştirilmiştir. Bu algoritma, farklı eğiklik ve yoğunluk parametrelerine

sahip ağaç kümeleri oluşturabilmektedir. Bu parametreleri sistematik olarak değişti-

rerek önerilen yöntemlerin güçlü ve zayıf yönlerini anlayabiliriz.

Anahtar Kelimeler: ağaç yapılı veri, boyut indirgeme, çizgelerde istatistiksel analiz,

temel bileşen analizi, çok boyutlu ölçekleme analizi
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To the beauty of variation and the variation of beauty...
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CHAPTER 1

INTRODUCTION

Working in high dimensional spaces has many difficulties in data analysis, such as

the curse of dimensionality, computational inefficiency, and visualization complexity.

Dimension reduction techniques are helpful to avoid those difficulties. These tech-

niques are simply representing the original data on high dimensional space with lower

dimensional data. Principal component analysis (PCA) and multidimensional scaling

(MDS) are two of the most commonly used dimension reduction techniques.

Including the PCA and MDS, many of the classical dimension reduction techniques

are designed to work with vectors in the Euclidean space. Besides, the increasing

need for deeper analyses, measurement capabilities, and data collecting technology

result in the collection of more complex data sets, which include different data objects

such as images, shapes, and graphs [1]. The collection of such data sets led to the

birth of object-oriented data analysis, where the data points in the Euclidean space

are replaced with more complex data objects, including images, shapes, and graphs.

The use of data objects in non-Euclidean spaces brings in additional complexity in

data analysis and necessitates the use of dimension reduction techniques.

In this study, we aim to develop dimension reduction techniques for data objects that

are trees. Such data objects appear in several application areas, such as neuroscience,

marketing, and anatomy. Using trees as data objects, instead of the points in the

Euclidean space, may help to represent the parent-child relation between the features.

For instance, the branching structures of the blood vessels are represented by trees

in [2]. The branching points are shown by the nodes, and the vessels between the

branching points are represented by the edges. If one try to represent these blood

vessels by data points in the Euclidean space, then it would be difficult to keep the
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information that which vessels are connected to each other with the branching points.

Such information loss may impair the success of the data analysis. Using trees as data

objects can help to avoid such a loss.

Dimension reduction for tree-structured data may be useful in several ways. For

example, it can be used to reduce the sizes of trees, e.g., brain artery structures of

patients [2], in tree clustering problems to expedite the clustering process. Dimension

reduction may be performed to be able to make relevant visualizations about trees. For

example, the purchases of customers, which may be organized as trees [3], may be

visualized after dimension reduction to understand the characteristics of purchasing

behavior of customers. Note that for a given set of trees, the dimension reduction

techniques proposed in this study return (possibly) smaller trees which are subtrees of

the original ones. With this property, dimension reduction may be helpful in reducing

the data collection effort or cost by only requiring the collection of the data in the

reduced trees. This property also allows one to understand the parts of the original

trees that carry the most useful information. Note that in the classical PCA (in the

Euclidean space), principal components do not need to correspond to the original

features of the data, which makes it difficult to interpret the results obtained using the

reduced points in terms of the original features. The same conclusion also holds true

for the classical MDS.

As a data object, a tree can be in different forms. It can be rooted or unrooted, and

it may have some labels on the nodes. The nodes and edges of a tree can carry some

attributes. The number of branches in all branching points may be limited, e.g., they

are limited with two branches in binary trees. In this study, we consider rooted and

labeled trees which do not carry any attributes on their nodes or edges, i.e., we only

focus on the branching structure (topology) of rooted labeled trees.

Given a set of rooted labeled trees, we aim to represent these trees using smaller

ones in such a way that the “useful information” is kept as much as possible. For

this purpose, in this study, we propose some dimension reduction techniques for tree-

structured data. We consider the classical PCA and MDS that work for data objects

that are points in the Euclidean space and propose their extensions to make the meth-

ods work for data objects in the tree space. In PCA for tree-structured data, we take
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the treelines proposed in [4] as the principal components. A previous study [2] pro-

poses a PCA method for tree-structured data with treelines being the principal com-

ponents. Our PCA methods are different from that of Aydin et al. [2] in terms of the

objective functions. The objective functions we use are inspired by the variance max-

imization objective of the classical PCA, whereas the distance minimization (between

original trees and the projected ones) objective is used in [2].

As a second dimension reduction technique, we propose MDS methods for tree-

structured data. These methods aim to keep the Hamming distances between pairs

of trees proportionally similar by selecting a subset of the edges. For this purpose, we

propose a mixed-integer linear programming (MILP) model, which selects the edges

to be kept in an optimal way. This model is not able to solve medium size instances

to optimality in 1 hour. Therefore we also propose heuristic methods for the problem

in which the edges are greedily selected.

In order to compare the performances of different dimension reduction methods pro-

posed for tree-structured data, we design a random tree generator that can produce

different types of rooted labeled trees with different cluster structures. For clustering

purposes, the tree clustering algorithms proposed by [5] are used and the quality of

the resulting clusters are evaluated by the adjusted Rand index [6]. After the compar-

ison of the methods on randomly generated data sets, we compare them using a brain

artery data set provided by Aylward and Bullitt [7] which is later extended by Aydin

et al. [2]. There are 93 rooted binary trees in this data set, where each one represents

the brain artery structure of an individual.

This study is one of the few studies on dimension reduction for graph-structured data.

The main contributions of the study can be summarized as follows:

• Two novel PCA methods for tree-structured data which use variance maximiza-

tion objective functions are provided. The experiments show that our methods

are better than the previously proposed one in terms of clustering accuracy.

• The computational experiments also show that by using only a small subset of

the treelines, high clustering accuracies can be obtained.

• This is the first study on MDS for tree-structured data that projects them in

3



the tree space. An MILP model and two heuristic algorithms are proposed

for this purpose. The computational experiments demonstrate that the methods

successfully select informative edges.

• A novel random rooted labeled tree construction method is provided, which

allows us to systematically analyze the performances of the proposed methods

on data with different cluster structures.

The thesis is organized as follows. We provide a literature review in Chapter 2. Chap-

ter 3 introduces the notation used and the problems studied in the thesis. In Chapter

4, we give the details of the previous and the newly proposed PCA methods for tree-

structured data. We test these methods on randomly generated and real data sets in

Chapter 5. In Chapter 6, we explain the MILP model and the heuristic algorithms

proposed as the MDS methods for tree-structured data and give the results of the re-

lated computational experiments in Chapter 7. Finally, in Chapter 8, the conclusion

and future research directions are provided.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we give a review of the related literature in the following order. First,

classical dimension reduction techniques are briefly reviewed. Second, we explain

the usage areas of tree-structured data and discuss statistical studies on data analysis

techniques for tree-structured data. Finally, we review the literature on dimension

reduction techniques for tree-structured data.

Dimension reduction techniques are used to represent original high dimensional data

in a lower-dimensional space while keeping useful information about the original

data. Dimension reduction techniques can be classified as feature selection and fea-

ture projection methods. Feature selection methods decide which features are essen-

tial for the data set, and they construct the lower-dimensional data by removing the

non-essential features from the data set. The feature projection methods project the

data set to extract useful information. They are also called feature extraction methods.

The difference between these methods is that the features of the lower-dimensional

data constructed by a feature selection method are a subset of the original features

while they may not be among the original features in the feature projection methods.

Principal component analysis (PCA) is one of the most commonly used dimension

reduction techniques. It is a feature projection method that is introduced by Pearson

[8], and independently developed and named by Hotelling [9]. PCA takes a set of

vectors as an input. By projecting the vectors onto the principal components, it re-

turns a set of projected vectors where the first principal component is the one that

carries the most information. For k ≥ 2, the k−th principal component carries the

most information after excluding the first k − 1 principal components from the data.

Therefore, lower-dimensional data can be obtained by projecting the data onto the
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first few principal components. In Section 4.1, PCA is explained in some more detail.

Multidimensional scaling (MDS) is another dimension reduction technique. It is first

introduced by Torgerson [10] and is defined in [11] as a problem to represent n data

objects as n points in Euclidean t− dimensional space such that pairwise distances

between the points are similar to the given pairwise distances between the data ob-

jects. Note that t is defined by the user, and the original data set is not explicitly given

but instead implicitly given by the pairwise distances. By selecting t closer to n, a

data set can be constructed such that the pairwise distances between the data points

are very close to the original pairwise distances. If t is selected as a small number,

lower-dimensional data can be obtained. There are many methods perform MDS, see

e.g., [12] and [10]. We provide more details about MDS in Section 6.1.

Trees are connected acyclic graphs that are useful to represent different data objects in

many areas such as neuroscience, marketing, and anatomy. Many studies benefit from

trees in the literature, and we briefly review some of them here. Phylogenetic trees

are used to show the evolutionary relationships of various biological species in many

studies, see e.g., [13] and [14]]. Aydin et al. [2] represent blood vessels on brains

with rooted binary trees. Similarly, Lu and Miao [15] represent retinal vessels with

rooted trees. XML documents are modeled as tree-like structures by Dalamagas et al.

[16]. Another example is available in the study of Chen et al. [3] where purchases of

customers are organized as rooted trees.

Statistical analysis of tree-structured data objects is a relatively new research area.

Wang and Marron [4] is one of the first studies on statistical analysis of trees. They

extend the field of functional data analysis to object-oriented data analysis, where the

data objects can be more complex objects than vectors in the Euclidean space. They

provide a mathematical framework for objects in non-Euclidean spaces, including tree

spaces. Shen et al. [17] provide two representations of trees which enable them to

perform functional data analysis to obtain statistical properties of tree-structured data

objects. They also propose a tree-pruning technique to focus on important structures

of tree populations. Wang et al. [18] present an extension of nonparametric regression

where the response variables are tree-structured.

Tree clustering is one of the most widely studied data analysis techniques for tree-
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structured data objects, see e.g., [5], [15], and [19]. For example, in [5], Dinler et al.

propose tree k-means based clustering algorithms for rooted trees. In this study, they

compare the results of the classical k-means algorithm on the vector representations

of the trees and the proposed tree clustering algorithm on the trees. They show that the

clustering accuracies of the tree clustering methods are much higher than those ob-

tained by clustering the vector representations with the classical k-means algorithm.

This result is one of our main motivations to perform dimension reduction in the tree

space instead of representing trees as vectors in the Euclidean space.

PCA is the most studied dimension reduction method for tree-structured data. Firstly,

Wang and Marron [4] develop an analog of the classical PCA in the binary tree space.

In their approach, they view the PCA as a sequence of one-dimensional representa-

tions and present the treeline as a one-dimensional subspace of rooted trees. Here

the treeline is defined as a sequence of trees where each tree is obtained by adding a

single node to the previous tree where this node is a child of the lastly added node.

A definition for the projection of any tree onto a treeline is proposed as the closest

tree on the treeline using the Hamming distance, and they show that this projection is

unique. They formulate a notion of principal component for trees as an optimization

problem whose objective function is to minimize the sum of all Hamming distances

between the original trees and their projections onto a treeline.

For the optimization problem presented by [4], Aydin et al. [2] give a linear-time

algorithm. This is the first PCA algorithm developed for tree-structured data, where

the data objects are binary trees with no attributes on the nodes and edges. They show

that minimizing the sum of all Hamming distances between the original trees and

their projections onto a treeline is equivalent to maximizing the sum of the weights

of the nodes on this treeline. Here the weight of a node is the number of trees in

the given set of trees that have this node. In Section 4.2, we explain this algorithm

in detail. The authors apply their algorithm on a set of brain artery structures of 73

patients, which is provided in the study of Aylward and Bullitt [7]. They represent the

branching structure of arteries with rooted trees where the nodes represent the branch

points, and the edges represent the vessels between the branching points. They pro-

vide two possible node correspondence, i.e., the choice of which child branch is put

on the left and which is put on the right for the trees. In the first one, descendant
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correspondence, nodes with more descendants are placed on the left-hand side. The

node whose corresponding vessel has a bigger radius is placed on the left-hand side in

thickness correspondence. Using these node correspondence definitions, they gener-

ate two different binary trees for each location (top, left, back, right) of each patient’s

brain and apply their algorithm on these eight sets of trees. On one of these eight sets

of trees, they find a significant correlation between the age of patients and the number

of nodes in the projections of the trees onto their first principal components. They

also suggest that descendant correspondence should be the default choice for future

works.

Alfaro et al. [20] extend the given algorithm in [2] for any rooted tree. They provide

the generalized version of the definitions and the algorithm. In order to perform a di-

mension reduction on a rooted tree, they develop the backward principal components,

i.e., the components that carry the minimum amount of information, and propose an

algorithm to find them. Here, they use the same distance-based objective as in [4].

They show the equivalence of the backward and the forward algorithms as well.

Aydin et al. [21] introduce k-treelines as an extension of the treelines. k-treelines are

similar to treelines with a single difference that while obtaining a tree, the node to add

to the previous tree can be a child node of any one of the lastly added k nodes. Note

that treeline is a special case of k-treeline when k is 1. They also define tree-curve,

which is another special case of k-treeline when k is infinite. Note that the last tree of

any tree-curve is the tree that contains all edges of all the tree objects. When k is not 1,

the projection of a tree onto a k-treeline is not unique, and there may exist some edges

on the projection that is not on the original tree. They provide the optimization model

to find the optimal k-treelines that minimizes the similar distance-based objective

function as used in [4]. Since this model cannot solve medium size instances in

optimality in reasonable times, they also propose some heuristic algorithms. They

consider binary and rooted trees where node correspondence is known.

In addition to the mentioned studies about statistical analysis of rooted trees, there are

a few other studies on phylogenetic trees. A study about PCA on phylogenetic trees

is carried out by Nye [22]. The author proposes an algorithm for PCA on phyloge-

netic trees. The algorithm takes a set of phylogenetic trees on some fixed set of taxa,
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not vectors, as an input and finds a fixed line through the central point of the trees,

which optimizes the objective function. Here the projection of a tree onto a line is

the closest point on the line to the tree. For the projection and the central point cal-

culations, the author uses geodesic metrics. There are two options for the algorithm’s

objective function: maximizing the variance and minimizing the sum of squared dis-

tances. Note that these objectives are equivalent in the Euclidean space. Therefore,

this study is the first that uses a variance-based objective function on a dimension re-

duction method for tree-structured data, where the data objects are phylogenetic trees.

Since the introduced optimization problem is computationally demanding, the author

proposes a greedy algorithm and a Monte Carlo optimization approach.

MDS for tree-structured data is much less studied than the PCA. Hillis et al. [23]

carry the first study that uses MDS for tree-structured data, where the data objects

are phylogenetic trees. In this study, the authors map the phylogenetic trees onto the

Euclidean space using the Robinson-Foulds distance. Observe that the projections

are not trees but points in the Euclidean space. Skwerer et al. [24] also perform MDS

on phylogenetic trees to map them onto the Euclidean space. Observe that there is

no study in the literature that proposes an MDS method for tree-structured data that

projects the trees onto the tree space.
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CHAPTER 3

NOTATION AND DEFINITION OF THE PROBLEMS

In this chapter, we introduce the basic notation used in the thesis and define the prob-

lems of interest. We denote by G = (N,E) a graph, where N and E denote the node

and edge sets of G, respectively. If the node and edge sets of a graph G are not ex-

plicitly given, we sometimes use the notation N(G) and E(G) to represent these sets,

respectively. Given an edge set E, the graph induced by E is the graph whose node

set is the union of the endpoints of the edges in E and whose edge set is equal to E. A

path is a sequence of distinct nodes and edges v0, e0, v1, e1, . . . , vn where vi is a node

for i ∈ {1, 2, . . . , n} and ei is the edge that joins vi and vi+1 for i ∈ {1, 2, . . . , n− 1}.

A graph is a tree if and only if there exists exactly one path between any two nodes.

Thus, a tree is an acyclic connected graph. Objects of interest of this study are rooted

and labeled trees where we focus on their topology, i.e., the branching structure of

them.

A tree is rooted if one of its nodes is selected as the root. The parent of a node v is the

first visited node on the path starting from v to the root on a rooted tree. If node u is

the parent of v, then v is called a child of u. A node is a leaf node if it has no children.

If two nodes have the same parent, then they are called siblings. If nodes w and u are

a child and the parent of node v, respectively, then the edge {u, v} is called the parent

of the edge {v, w}. In this case, the edge {v, w} is called a child of the edge {u, v}.

An edge is a leaf edge if it has no children. Let v be a child of u. If an edge is on the

path between the root and u, then it is called an ascending edge of {u, v}. The level

of a node u is the number of edges on the path from u to the root. Note that the level

of a child node is one greater than the level of its parent, and the level of the root is

zero. The maximum of the levels of all nodes of a tree gives the height of the tree. A
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labeled tree is a tree where a unique label is given to each node. From now on, when

we say node u, we mean the node with label u, and the node and edge sets of trees are

written in terms of the labels. In the rest of the thesis, all trees are rooted and labeled

unless otherwise stated.

If the nodes of a tree are restricted to have at most m children, then the tree is called an

m-ary tree. 2-ary trees are also named binary trees. A complete m-ary tree of height

h is the tree whose all nodes except the ones in level h have exactly m children.

A set of (rooted and labeled) trees is said to be coherent if their roots have the same

label and the parent-child relations are consistent with the labels, i.e., if node u is the

parent of node v in a tree, and if node v exists in another tree, then its parent has to be

u in this tree as well. In Figure 3.1, an example of a coherent set of trees is provided

with the numbers next to the nodes representing the labels. The root is the same for

all trees, which has label 1. Each tree is a binary tree of height 3. This data set is

constructed with the random tree generator method explained in Section 5.1.1. t1, t2,

t3, and t4 are generated with the same parameter set while another set of parameters

is used for t5, t6, t7, and t8.

Let S = {t1, t2, . . . , tn} be a coherent set of n many trees, where ti = (Ni, Ei) for

each i ∈ {1, 2, . . . , n}. We represent the union of two trees ti and tj by ti∪tj where we

have that ti∪ tj = (Ni∪Nj , Ei∪Ej). Note that ti∪ tj is also a tree. The intersection

of two trees ti and tj is a tree, represented by ti∩tj , with ti∩tj = (Ni∩Nj , Ei∩Ej).

ti \ tj represents a graph that is induced by Ei \Ej . Note that, for two trees ti and tj ,

ti \ tj may not be a tree.

Given a coherent set of trees S = {t1, t2, . . . , tn} with ti = (Ni, Ei) for each i ∈
{1, 2, . . . , n}, the union of all trees in S is called the support tree of S and is denoted

by ST . Note that ST is a tree with N(ST ) =
⋃n

i=1Ni and E(ST ) =
⋃n

i=1Ei and

each tree in S is a subtree of ST . For a given edge e of ST , we denote the set

of all ascending and children edges of e on the support tree by asc(e) and ch(e),

respectively. LN and LE represent the set of all leaf nodes and leaf edges of the

support tree, respectively. The frequency of an edge e with respect to set S, denoted

by freq(e), is the number of trees in S which include edge e. Mathematically, we
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Figure 3.1: A coherent set S = {t1, t2, t3, t4, t5, t6, t7, t8} of trees
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Figure 3.2: Support tree of the coherent set S given in Figure 3.1

have that

freq(e) =
n∑

i=1

| Ei ∩ {e} | . (3.1)

Observe that if f ∈ asc(e), then freq(f) ≥ freq(e). Note that the dependencies of

ST, asc(e), ch(e), LN,LE, and freq(e) on S are omitted in the notation as they will

be clear from the context.

Given a coherent set of trees S = {t1, t2, . . . , tn} and its support tree ST , if t′ is

a subtree of ST with its root being the same as the root of ST , then we have that

{t1, t2, . . . , tn, t′} is also a coherent set of trees.

The support tree of the coherent set of trees S shown in Figure 3.1 is provided in

Figure 3.2 where the numbers on the edges represent the frequencies of the edges

with respect to S. Note that |LN | = |LE| = 7.

We borrow the idea of a treeline from [4]. With a slight change, we define a treeline

as a path between the root and a leaf node in the support tree. The treelines are in

one-to-one correspondence with the leaf nodes of the support tree, and we represent

the set of all treelines by L = {ℓ1, ℓ2, . . . , ℓ|LN |}.
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The projection of a tree t onto a treeline ℓ, Pℓ(t), is defined as

Pℓ(t) = t ∩ ℓ. (3.2)

The projection of a tree t onto a set of treelines L, PL(t), is similarly defined as

follows.

PL(t) = t ∩
⋃
ℓ∈L

ℓ. (3.3)

The projection of a graph G onto a treeline ℓ, denoted by Pℓ(G), is the graph induced

by E(G) ∩ E(ℓ). The projection of a graph G onto a set of treelines L, denoted by

PL(G), is defined as the graph that is induced by E(G) ∩ (
⋃

ℓ∈L E(ℓ)).

Given two graphs Gi = (Ni, Ei) and Gj = (Nj, Ej), the distance between them,

denoted by d(Gi, Gj), is measured by the Hamming distance [25]. Mathematically,

we have that

d(Gi, Gj) =| Ei \ Ej | + | Ej \ Ei | . (3.4)

The similarity of them, denoted by s(Gi, Gj), is measured by the vertex / edge overlap

[26]. It is equal to

s(Gi, Gj) =
2 | Ei ∩ Ej | +1

2 ( | Ei | + | Ej | ) + 2
. (3.5)

In this study, our objective is to reduce the sizes of the trees for a given coherent set

of trees while keeping maximum information about the data set. In other words, we

are interested in dimension reduction for tree-structured data. For this purpose, we try

to adapt principal component analysis (PCA) and multidimensional scaling (MDS) to

tree-structured data.

In PCA, we follow the steps of Aydin et al. [2] and represent the principal components

by treelines. Accordingly, principal components can be selected from the set of all

treelines corresponding to a given coherent set of trees. The set of the first k principal

components is indicated by L∗
k = {ℓ∗1,...,ℓ∗k} where ℓ∗i is the treeline that represents

the i−th principal component. The k−th principal component tree is defined as the
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union of the first k principal components and is equal to

pck =
k⋃

i=1

ℓ∗i . (3.6)

With this notation, the projection of a tree t onto the first k principal components can

be computed as

PL∗
k
(t) = t ∩ pck (3.7)

which is obtained by rewriting (3.3) for the first k principal components.

In PCA for tree-structured data, we define our problem as the problem of selecting

the treelines from the set of treelines that carry the maximum amount of informa-

tion on it. Note that by changing the measure of the amount of information carried

by a treeline, we can obtain different PCA methods for tree-structured data. In the

next chapter, we explain the PCA in the Euclidean space and the tree space, present

the previous work, and propose novel methods for selecting the best treelines as the

principal components.

In MDS, we represent the dimensions by edges and select the edges from the edge

set of the support tree of a given coherent set of trees. The k−th scaling tree, sck, is

defined as the tree induced by the set of first k selected edges. The projection of a tree

ti onto sck, denoted by Pk(ti), can be computed as

Pk(ti) = ti ∩ sck. (3.8)

In MDS for tree-structured data, our problem is to select the edges of ST to be in sck

while keeping the pairwise Hamming distances between the projected trees propor-

tionally similar to the pairwise Hamming distances between the original trees. We

explain the multidimensional scaling in the Euclidean space and the tree space, pro-

pose an exact method to select the optimal edges, two greedy algorithms to select the

edges sequentially to be able to perform MDS in the tree space.

In Figure 3.3, the flowchart of the thesis is provided. Here we have tree-structured

data sets whose original partitions of clusters are known. We reduce the sizes of

trees and generate the projected data sets using the PCA and MDS methods for tree-

structured data. By inputting the projected data sets into a tree clustering algorithm,

we obtain the partitions of the projected data sets. At the end, by comparing the
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Figure 3.3: The flowchart of the thesis

original and the generated partitions, we measure the performances of the proposed

methods. In the following chapters, we explain the PCA and MDS methods for tree-

structured data and corresponding computational studies.
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CHAPTER 4

PRINCIPAL COMPONENT ANALYSIS FOR TREE-STRUCTURED DATA

4.1 Principal Component Analysis

Principal Component Analysis (PCA) is a data analysis technique that helps reduce

the number of dimensions of the data points with minimum loss of information about

the data. PCA performs a change of basis on the data using an orthonormal basis

constructed by linearly independent vectors. In PCA, a sequence of orthonormal

vectors called principal components is obtained using the data where the first principal

component is the vector that maximizes the variance of the lengths of the projections

of the data points onto the line spanned by this vector. For any k ≥ 2, the k−th

principal component is the vector that maximizes the variance of the lengths of the

projections of the updated data points onto the line spanned by this vector. Here the

updated data stands for the data obtained by projecting the data orthogonal to the

subspace spanned by the first k− 1 principal component vectors. Note that the vector

that maximizes the variance of the lengths of the projections of the updated data points

onto the line spanned by this vector is also the one that minimizes the sum of squared

Euclidean distances between the updated data points and their projections onto the

same line. Thus, in the Euclidean space, we have two equivalent objective functions

that can be used to get the principal components: the variance maximization and

the distance minimization objectives. After the change of basis, lower-dimensional

data can be obtained by using only the first few principal components. In order to

decide the number of principal components, the amount of information carried by the

principal components can be used. The carried amount of information is measured

by the variance of the lengths of the projections of the updated data points onto the

line spanned by each principal component vector.
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In the analysis of tree-structured data, the concepts of dimension reduction and princi-

pal component analysis are much less studied and understood. In the study of Aydin

et al. [2], the principal components are taken as the treelines of the support tree.

While the classical PCA in the Euclidean space computes the principal components,

the PCA method proposed in [2] for tree-structured data selects the principal compo-

nents from a set of treelines. For this reason, it can also be considered as a feature

selection method. Projecting the trees onto only the first few treelines results in (pos-

sibly) smaller trees while hopefully keeping as much useful information as possible

about the original tree-structured data. Our study, however, shows that the method

proposed in [2] does not always keep enough useful information about the data. It is

mainly because the variance maximization and distance minimization objectives are

not equivalent in the tree space. The method proposed in [2] is based on the distance

minimization objective. In contrast, the main objective should be variance maximiza-

tion since it is related to the amount of useful information kept after the PCA. In this

study, we propose PCA methods for tree-structured data that are based on the vari-

ance maximization objective and show their superiority over the method proposed in

[2]. In the rest of this chapter, we give the details of the method proposed in [2] and

the newly developed methods.

4.2 Motivation and Previous Work

The PCA method proposed by Aydin et al. [2] for tree-structured data uses a distance

minimization objective. We name this method as the Distance Minimization PCA for

Tree-Structured Data and abbreviate it as the DMIN method. Although it is called a

PCA method for trees in [2], this method can also be interpreted as a feature selec-

tion method as there is no change of basis. The method selects some treelines and

removes the edges that are not in the selected treelines from the trees to reduce the

dimension. It seems similar to selecting a subset of relevant features and removing

the remaining features from the data, as in feature selection. Note that our proposed

methods are based on a similar idea, so they can also be seen as feature selection

methods. The steps of DMIN method are inspired by the steps of the classical PCA

in the Euclidean space. Moreover, the objective used in DMIN method is the same
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as one of the alternative objectives used in the classical PCA. Therefore, the authors

in [2] called DMIN method a PCA method. In this thesis, we also call our methods

as PCA methods as they are based on the ideas developed in [2], and due to their

similarity to the classical PCA in terms of the variance maximization objective, while

we are aware of the similarities between our methods and feature selection.

In [2], an initialization step for DMIN method is given. In this step, before select-

ing any treeline, common edges of all trees in the tree set are put into the edge set

of the principal component tree. Thus, common edges are also counted as selected

on each principal component in addition to the selected treelines. It is in contrast

with the idea of dimension reduction while at the same time resulting in keeping un-

informative edges. For this purpose, we do not consider this additional step in our

implementation of DMIN method. Note that if there is no common edge in the data

set, our modification and the original method give exactly the same results.

Now, we provide the details of DMIN method. Let S = {t1, t2, . . . , tn} be a coherent

set of trees where ti = (Ni, Ei). Let ST be the corresponding support tree and

L = {ℓ1, ℓ2, . . . , ℓ|LN |} be the set of all treelines in ST where LN is the set of leaf

nodes of ST . The first principal component, ℓ∗1, selected by DMIN method, is the

treeline that minimizes the sum of all Hamming distances between trees and their

projections onto this treeline. Mathematically, we have that

ℓ∗1 = argmin
ℓ∈L

n∑
i=1

d(ti, Pℓ (ti)). (4.1)

For all k ≥ 2, the k−th principal component, ℓ∗k, selected by DMIN method, is the

treeline that minimizes the sum of all Hamming distances between the updated trees

and their projections onto ℓ∗k. After the first k-1 principal components are computed,

the tree ti is updated as ti \ pck−1, where pck−1 is as it is defined in (3.6). In other

words, to update the tree ti, we subtract from it the edges of ti that are among the

edges of the first k-1 principal components. Therefore, selection of ℓ∗k in DMIN

method is similar to minimizing the sum of squared Euclidean distances between the

updated data points and their projections onto the line spanned by the k−th principal

component vector as in the classical PCA in the Euclidean space. In DMIN method,

we can write the k−th principal component as
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ℓ∗k = argmin
ℓ∈L\L∗

k−1

n∑
i=1

d((ti \ pck−1) , Pℓ(ti \ pck−1)), (4.2)

where L∗
k−1 is the set of first k-1 principal components and pck−1 is the principal

component tree as defined in (3.6). Since all the edges in Pℓ(ti \ pck−1) are also

in (ti \ pck−1), we have that d((ti \ pck−1) , Pℓ(ti \ pck−1)) = |E(ti \ pck−1)| −
|E(Pℓ(ti \ pck−1))|. Since the term |E(ti \ pck−1)| is independent of ℓ, we have that

ℓ∗k = argmin
ℓ∈L\L∗

k−1

∑n
i=1(−|E(Pℓ(ti \ pck−1))|) which is equivalent to

ℓ∗k = argmax
ℓ∈L\L∗

k−1

n∑
i=1

| (E(ti) ∩ (E(ℓ) \ E(pck−1)) | . (4.3)

Note that, if we define E(pc0) and L∗
0 as the empty sets, then (4.3) is applicable when

k = 1 as well. We can rewrite (4.3) as ℓ∗k = argmax
ℓ∈L\L∗

k−1

∑
e∈E(ℓ)\E(pck−1)

∑n
i=1 | Ei ∩ {e} |

which can be simplified to

ℓ∗k = argmax
ℓ∈L\L∗

k−1

∑
e∈E(ℓ)\E(pck−1)

freq(e), (4.4)

using the definition of frequency in (3.1). (4.4) shows that the k−th principal com-

ponent is the treeline that carries most frequencies on its edges that are not in pck−1.

For DMIN method, in the selection process of the k−th principal component, we de-

fine the score of the treeline ℓ, denoted by sDMIN
k (ℓ), as

∑
e∈E(ℓ)\E(pck−1)

freq(e). This

means that the k−th principal component (after selecting the first k − 1 principal

components) is the treeline which has the largest score.

An illustrative example of applying this method on the set of trees given in Figure 3.1

is provided in Figure 4.1. At the beginning, sDMIN
1 (ℓ) values of the treelines in the

left-to-right order as displayed in Figure 4.1 (i.e., from the treeline joining the root

and node 8 to the treeline joining the root and node 15) are 14, 15, 17, 16, 16, 14,

and 15. Since the treeline joining the root and node 10 has the maximum score, it is

selected as the first principal component by DMIN method. In Figure 4.1, the first

principal component is represented by the dotted treeline. After selecting the first

principal component, the scores of the treelines, i.e., sDMIN
2 (ℓ) values, are calculated

as 7, 8, -, 2, 16, 14, 15, respectively, where - represents a previously selected treeline.

Hence, the second principal component is selected as the treeline joining the root and

node 13. This treeline is represented by the dashed treeline in Figure 4.1. Note that
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Figure 4.1: The first two principal components selected by DMIN method (dotted and

dashed treelines, respectively) for the set of trees given in Figure 3.1

since there is no common edge for all trees, applying the initialization step of DMIN

method would not affect the principal component trees.

The projections of the trees given in Figure 3.1 onto the first two treelines selected

by DMIN method are given in Figure 4.2. Here the projection of tree ti onto the first

k principal components selected by DMIN method is represented as PDMIN(k)(ti).

Recall that the set of trees given in Figure 3.1 has a bi-cluster structure with the first

four and the last four trees being in different clusters. Note that the existing bi-cluster

structure is not visible in Figure 4.2. Even though there are many uncommon edges

of t1 and t5, their projections have four common edges and only one uncommon edge.

Moreover, although their original trees are different, projections of t3 and t8 are the

same. DMIN cannot keep the cluster structure of the data in this example. This

motivates us to develop other PCA methods to keep useful information about the data

after the dimension reduction process. We also observe that (4.4) results in selecting

the treeline that maximizes the total number of edges in the projections. However,

this objective does not consider variance, which is the measure of information in the

classical PCA. Thus, the method proposed in [2] may result in selecting the treelines

that make the projections of trees similar to each other, as in Figure 4.2. Since such
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Figure 4.2: Projections of trees in Figure 3.1 onto the first two principal components

selected by DMIN method
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projections may not keep the individual characteristics of the trees, we propose novel

methods in Section 4.3 and 4.4 to select treelines using variance-based objectives, as

the variance maximization objective in the classical PCA.

4.3 Variance Maximization PCA for Tree-Structured Data

For the problem of generating principal components for tree-structured data, we pro-

pose two novel methods. The first one is named as the Variance Maximization PCA

for Tree-Structured Data and is abbreviated as the VMAX method. This method is

basically an extension of the classical PCA which uses a variance maximization ob-

jective. VMAX method selects the first principal component as the treeline ℓ∗1 that

maximizes the variance of the lengths of the projections of the trees onto ℓ∗1. Mathe-

matically, we have that

ℓ∗1 = argmax
ℓ∈L

V ar( [ | E(Pℓ(ti)) | ]ni=1 ), (4.5)

where V ar(·) stands for the standard sample variance. For all k ≥ 2, the k−th

principal component, ℓ∗k, selected by VMAX method, is the treeline that maximizes

the variance of the lengths of the projections of the updated trees onto ℓ∗k. Here the

updated tree is used as it is explained in Section 4.2, i.e., the tree ti is updated as

ti \ pck−1, where pck−1 is as it is defined in (3.6). Note that selection of ℓ∗k in VMAX

method is similar to maximizing the variance of the lengths of the projections of the

updated data points onto the line spanned by the k−th principal component vector

in the Euclidean space. In VMAX method, the k−th principal component can be

computed as

ℓ∗k = argmax
ℓ∈L\L∗

k−1

V ar( [ | E(Pℓ(ti \ pck−1)) | ]ni=1), (4.6)

where L∗
k−1 is the set of first k − 1 principal components. If we define E(pc0) and

L∗
0 as the empty sets, then (4.6) becomes applicable when k = 1 as well. For VMAX

method, in the selection process of the k−th principal component, we define the score

of the treeline ℓ, denoted by sVMAX
k (ℓ), as V ar( [ | E(Pℓ(ti \ pck−1)) | ]ni=1). This

means that the k−th principal component (after selecting the first k − 1 principal
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components) is the treeline which has the largest score. We can rewrite (4.6) as

ℓ∗k = argmax
ℓ∈L\L∗

k−1

n∑
i=1

( | E(ti \ pck−1) ∩ E(ℓ) | − µℓ )
2, (4.7)

where µℓ =
1
n

∑n
i=1 | E(ti \pck−1)∩E(ℓ) | stands for the sample mean of the lengths

of the projections of the updated trees onto ℓ. Note that, (n− 1) is removed from the

denominator of (4.7) as it is a constant for all ℓ ∈ L.

Observe that the objective in (4.6) is variance-based, unlike the objective of DMIN

method in (4.4). VMAX method selects a treeline as the first principal component for

which the variability of the projections of the trees onto this treeline is the maximum.

In DMIN method, however, the treeline which has the largest sum for the lengths of

the projections is selected as the first principal component. Therefore, we expect the

dimension reduction performed by VMAX method to keep more useful information

about the original data set than DMIN method.

The steps of VMAX method are detailed in Algorithm 1. The inputs of the algorithm

are a coherent set of trees S and the number of principal components npc. The output

of the algorithm is the set of principal components {ℓ∗1, ℓ∗2, . . . , ℓ∗npc}. The algorithm

starts with an initialization step which generates all possible principal components.

First, it builds the corresponding support tree ST and its leaf edge set LE as explained

in Chapter 3. It initializes the treeline set as the empty set and pc0 as the tree having

only the root but no edges. Then it generates a treeline for each leaf and puts them

into the treeline set L.

After the initialization step, for all k ∈ {1, . . . , npc}, the selection and update steps

follow. The selection step selects the k−th principal component ℓ∗k from the treeline

set L that maximizes the variance of the lengths of the projections of the updated trees

onto ℓ∗k using (4.6). In the update step, L∗
k and the k−th principal component tree,

pck, are constructed using L∗
k−1 and pck−1, respectively. They are then used to update

the trees. At the end of the algorithm, the set of the first npc principal components

are returned. Using this set, for all k ∈ {1, . . . , npc}, the projection of a tree ti onto

the first k principal components can be obtained as in (3.7).

We now explain VMAX method on an example. As inputs to the algorithm, we take

npc = 2 and the trees given in Figure 3.1. Firstly, sVMAX
1 (ℓ) values of the treelines in
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Algorithm 1: VMAX

1 Inputs: Coherent set of trees S = {t1, t2, . . . , tn} where ti = (Ni, Ei) for

i = 1, . . . , n and the number of principal components npc

2 Initialization: Generate all possible principal components.

3 Let ST be the support tree of S.

4 Let LE be the set of leaf edges of S.

5 Let L = ∅, L∗
0 = ∅ and pc0 be the tree where N(pc0) has only the root and

E(pc0) = ∅.

6 for e ∈ LE do

7 Let ℓ be the treeline induced by E(ℓ) = asc(e) ∪ {e}.

8 L = L ∪ {ℓ}

9 end

10 for k=1 to npc do

11 Selection: Select the principal component.

12 ℓ∗k = argmax
ℓ∈L\L∗

k−1

V ar( [ | E(Pℓ(ti \ pck−1)) | ]ni=1)

13 Update: Construct the principal component tree.

14 pck = pck−1 ∪ ℓ∗k

15 L∗
k = L∗

k−1 ∪ {ℓ∗k}

16 end

17 return {ℓ∗1, ℓ∗2, . . . , ℓ∗npc}
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Figure 4.3: The first two principal components selected by VMAX method (dotted

and dashed treelines, respectively) for the set of trees given in Figure 3.1

the left-to-right order as displayed in Figure 4.3 (i.e., from the treeline joining the root

and node 8 to the treeline joining the root and node 15) are evaluated as 1.36, 1.55,

0.98, 0.86, 1.14, 1.36, 1.55. Since the maximum score is shared with two treelines,

one of them is chosen arbitrarily. In this case, we choose the treeline joining the root

and node 9 as the first principal component, which is represented by the dotted treeline

in Figure 4.3. After selecting the first principal component, sVMAX
2 (ℓ) values are

calculated as 0.27, -, 0.5, 0.41, 1.14, 1.36, and 1.55, respectively, where - represents a

previously selected treeline. Thus, the treeline joining the root and node 15 is selected

as the second principal component. This treeline is represented by the dashed treeline

in Figure 4.3.

In Figure 4.4, the projections of the trees given in Figure 3.1 onto the first two prin-

cipal components selected by VMAX method are given. Here the projection of tree

ti onto the first k principal components selected by VMAX method is represented as

PVMAX(k)(ti). Observe that the first four projections and the last four have different

structures where the projections of the trees of the first cluster (i.e., the first four trees)

have longer paths on the left side while the projections of the other trees have longer

paths on the right side. For both clusters, within similarity of clusters is high. Even
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Figure 4.4: Projections of trees in Figure 3.1 onto the first two principal components

selected by VMAX method
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three of the four projections are the same in both clusters. For this instance, VMAX

method seems to be more successful in keeping the cluster structure of the data than

DMIN method. In order to broaden our understanding of the performances of dif-

ferent PCA methods for tree-structured data, we carry out extensive computational

experiments using different data sets in Chapter 5.

4.4 Similarity Minimization PCA for Tree-Structured Data

Another variance-based objective function can be constructed using the fact that the

standard sample variance in the Euclidean space is equivalent to the sum of squares of

all pairwise distances between the data points divided by the square of the number of

data points. Note that by this equivalence, k−th principal component vector selection

of classical PCA in the Euclidean space can be performed by taking the vector v that

maximizes the sum of squares of all pairwise distances between the projections of

data points onto the union of first k − 1 principal component vectors and v.

Inspired by the fact that maximizing the distances is equivalent to minimizing the

similarities, we develop another PCA method for tree-structured data that minimizes

the sum of all pairwise similarities of the trees, a variance-based objective function.

We name this method it as Similarity Minimization PCA for Tree-Structured Data

(SMIN ) method. SMIN method selects the first principal component as the treeline

ℓ∗1 that minimizes the pairwise similarities of the projections of the trees onto ℓ∗1.

Mathematically, we have that

ℓ∗1 = argmin
ℓ∈L

n−1∑
i=1

n∑
j=i+1

s(Pℓ(ti), Pℓ(tj)). (4.8)

For all k ≥ 2, the k−th principal component, ℓ∗k, selected by SMIN method, is the

treeline that minimizes the pairwise similarities of the projections of the trees onto

pck−1 ∪ ℓ∗k where pck−1 is used as defined in (3.6). Note that selection of ℓ∗k in SMIN

method is similar to maximizing the sum of squares of all pairwise distances between

the projections of data points onto the union of the first k−1 principal component vec-

tors and k−th principal component vector in the Euclidean space. In SMIN method,
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the k−th principal component can be computed as

ℓ∗k = argmin
ℓ∈L\L∗

k−1

n−1∑
i=1

n∑
j=i+1

s( ti ∩ (pck−1 ∪ ℓ) , (tj ∩ (pck−1 ∪ ℓ)) . (4.9)

For SMIN method, the score of the treeline while selecting the k−th principal compo-

nent is denoted by sSMIN
k (ℓ) and is defined as

∑n−1
i=1

∑n
j=i+1(s ( ti∩(pck−1∪ℓ) , (tj∩

(pck−1∪ ℓ))) . This means that the k−th principal component (after selecting the first

k − 1 principal components) is the treeline which has the smallest score. Observe

that, the objective in (4.9) is variance-based as in (4.6), unlikely to the objective of

DMIN method in (4.4).

The steps of SMIN method are detailed in Algorithm 2. The inputs of the algorithm

are a coherent set of trees S and the number of principal components npc. The output

of the algorithm is the set of principal components {ℓ∗1, ℓ∗2, . . . , ℓ∗npc}. The algorithm

starts with an initialization step which generates all possible principal components.

First, it builds the corresponding support tree ST and its leaf edge set LE as explained

in Chapter 3. It initializes the treeline set as the empty set and pc0 as the tree having

only the root but no edges. It constructs the edge existence matrix D = [Dij], where

Dij takes the value 1 if and only if j−th edge on ST (in any order), denoted by ej , is

on ti. Then the algorithm generates a treeline for each leaf and puts it into the treeline

set L.

After the initialization step, for all k ∈ {1, . . . , npc}, the selection and update steps

follow. The selection step calculates the scores of all treelines in the treeline set. To

compute all pairwise similarities of trees for all k we use matrices. For any treeline,

ℓ, firstly, the matrix R is constructed as the edge existence matrix of ℓ ∪ pck−1. Then,

the matrix I = [Iim] is obtained by matrix multiplication of R and the transpose

of R where Iim represents the number of edges in Pℓ∪pck−1
(ti) ∩ Pℓ∪pck−1

(tm). If

two trees, ti and tm, have the edge ej ∈ E(ℓ ∪ pck−1), then Rij = Rmj = 1 and

RRT would increment the value of Iim by 1. Otherwise, since at least one of their

values in the matrix R would be 0, the value of Iim would not increase. Moreover,

the diagonal values of the matrix represent the number of edges on the trees. Now

all the terms that are needed to calculate the similarity of any two trees are obtained

by constructing the matrix I. The similarity matrix A = [Aim] can be constructed

as Aim = (2 Iim + 1)/(2 (Iii + Imm) + 2). Then, the sum of all Aims is recorded
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Algorithm 2: SMIN

1 Inputs: Coherent set of trees S = {t1, t2, . . . , tn} where ti = (Ni, Ei) for

i = 1, . . . , n and the number of principal components npc.

2 Initialization: Generate all possible principal components.

3 Let ST be the support tree of S and ej be the j-th edge on ST for

j ∈ {1, 2, . . . , |E(ST )|}.

4 Let LE be the set of leaf edges of S.

5 Let L = ∅, L∗
0 = ∅ and pc0 be the tree where N(pc0) has only the root and

E(pc0) = ∅.

6 Let D be a matrix where Dij = 1 if ej ∈ Ei, 0 otherwise.

7 for e ∈ LE do

8 Let ℓ be the treeline induced by E(ℓ) = asc(e) ∪ {e}.

9 L = L ∪ {ℓ}

10 end

11 for k=1 to npc do

12 Selection: Select the principal component.

13 for ℓ ∈ L \ L∗
k−1 do

14 Let R be the matrix D whose j-th vector is removed if

ej /∈ E(ℓ ∪ pck−1).

15 I = RRT

16 Construct the matrix A where Aim = (2 Iim + 1)/(2 (Iii + Imm) + 2).

17 sSMIN
k (ℓ) =

∑n−1
i=1

∑n
m=i+1Aim

18 end

19 ℓ∗ = argmin
ℓ∈L\L∗

k−1

sSMIN
k (ℓ)

20 Update: Construct the principal component tree and update the score

array and set of treelines.

21 pck = pck−1 ∪ ℓ∗k

22 L∗
k = L∗

k−1 ∪ {ℓ∗k}

23 end

24 return {ℓ∗1, ℓ∗2, . . . , ℓ∗npc}
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on sSMIN
k (ℓ) to keep the score of the treeline ℓ. The selection step selects the k−th

principal component ℓ∗k from the treeline set L \ L∗
k−1 that has the smallest score. In

the update step, the k−th principal component tree is constructed as the union of the

previous principal component tree, pck−1, and the last principal component, ℓ∗k. The

k−th principal component tree is then used to construct the matrix R, and the L∗
k is

constructed using the lastly selected treeline.

At the end of the algorithm, the set of the first npc principal components are returned.

Using this set, for all k ∈ {1, . . . , npc}, the projection of a tree ti onto the first k

principal components can be obtained using (3.3).

We now explain Algorithm 2 on an example. As inputs to the algorithm, we take

npc = 2 and the set of trees given in Figure 3.1. At the beginning, the edge existence

matrix D is constructed as

D =



1 1 1 1 1 0 1 1 1 0 0 0 0

1 1 1 1 1 0 0 1 1 0 0 0 0

1 1 1 1 1 0 1 1 0 0 1 0 0

1 0 1 1 0 0 1 1 0 0 0 0 0

1 1 0 1 0 1 0 0 1 1 0 0 1

1 1 0 1 1 1 0 0 0 1 0 1 1

0 1 0 0 1 1 0 0 0 0 1 1 1

1 1 0 1 1 1 0 0 0 0 1 1 1



where rows indicate the trees while the columns are for edges. Since there are eight

trees in the tree set and 13 edges of the support tree, the size of matrix D is 8×13. This

matrix is permanent, but the other matrices are computed for all principal components

and each treeline. Therefore, we show the matrices R, I, and A for the treeline joining

the root and node 9 when k = 1. The matrix R, i.e., the existence of the edges on pck

tree if the corresponding treeline would be selected as the k−th principal component,
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is constructed as

R =



1 1 1

1 1 0

1 1 1

1 1 1

1 0 0

1 0 0

0 0 0

1 0 0


whose columns are 1st, 3rd, and 7th columns of the matrix D where the edges of the

treeline joining the root and node 9 are the 1st, 3rd, and 7th edges of the support tree.

The matrix I, which shows the number of common edges of the projections of trees

onto ℓ ∪ pck−1, is constructed as RRT which is given below

I =



3 2 3 3 1 1 0 1

2 2 2 2 1 1 0 1

3 2 3 3 1 1 0 1

3 2 3 3 1 1 0 1

1 1 1 1 1 1 0 1

0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 1

1 1 1 1 1 1 0 1


.

Using matrix I, the matrix A that consists of pairwise similarities of the projections

of trees onto ℓ ∪ pck−1 can be constructed as

A =



0.5 0.42 0.5 0.5 0.3 0.3 0.13 0.3

0.42 0.5 0.42 0.42 0.38 0.38 0.17 0.38

0.5 0.42 0.5 0.5 0.3 0.3 0.13 0.3

0.5 0.42 0.5 0.5 0.3 0.3 0.13 0.3

0.3 0.38 0.3 0.3 0.5 0.5 0.25 0.5

0.3 0.38 0.3 0.3 0.5 0.5 0.25 0.5

0.13 0.17 0.13 0.13 0.25 0.25 0.5 0.25

0.3 0.38 0.3 0.3 0.5 0.5 0.25 0.5


.

The score of the treeline joining the root and node 9 can be computed by summing

all elements on the upper diagonal matrix of A, which is 9.37. If sSMIN
1 (ℓ) values of
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all treelines are calculated in the same way, then their scores are obtained in the left-

to-right order as displayed in Figure 4.3 (i.e., from the treeline joining the root and

node 8 to the treeline joining the root and node 15) as 9.37, 9.35, 10.54, 10.75, 9.90,

9.37, and 9.35. Since the minimum score is shared with two treelines, one of them

is chosen arbitrarily. In this case, we choose the treeline joining the root and node

9. After the selection of the first principal component, the sSMIN
2 (ℓ) are evaluated

as 12.75, -, 11.90, 12.14, 9.90, 9.37, and 9.35, respectively, where - represents a

previously selected treeline. Then the treeline joining the root and node 15 is selected

as the second principal component since it has the smallest score.

Observe that the first two principal components selected by VMAX and SMIN meth-

ods are the same. Hence, it can be concluded that SMIN method is also successful

in keeping the information for this instance. In order to broaden our understanding

of the difference between their performances, we carry out detailed computational

experiments in Chapter 5.

35



36



CHAPTER 5

COMPUTATIONAL EXPERIMENTS FOR PCA METHODS FOR

TREE-STRUCTURED DATA

In this chapter, we test the performances of the proposed PCA methods (VMAX and

SMIN), and the PCA method of Aydin et al. [2] (DMIN) for tree-structured data

on synthetic and real data sets. In our computational experiments, for each method,

we generate one projected data set for each number of principal components, i.e.,

if the number of principal components is specified as npc, then there are npc many

projected data sets for each method. Then, the projected data sets are inputted into

a clustering algorithm to obtain the partitions of the projected trees into the clusters

(generated partitions). We calculate the similarities between the original partitions

of the trees and the generated partitions of the projected trees. Note that the original

partitions of the trees are known. If two partitions are similar, it can be concluded

that the projected tree set carries a good amount of information about the original

tree set. Therefore, the similarity scores show how much the method keeps the useful

information about the data during the dimension reduction process.

The tree k-means algorithm that is proposed by Dinler et al. [5] is used to cluster

the trees. It is inspired by the classical k-means clustering algorithm in the Euclidean

space and developed specifically for tree-structured data. In the initialization step,

as in the standard k-means algorithm proposed in [27], the tree k-means algorithm

assigns the trees randomly to clusters. It is assumed that the number of clusters is

known a priori. After that, there are assignment and update steps that process itera-

tively. Each tree is assigned to the closest cluster in the assignment step, and centroid

trees of the clusters are recalculated in the update step. The algorithm stops when

there is no change in the assignments of the trees. In [5], it is shown that using vertex
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/ edge overlap to measure the proximity of the trees gives better solutions than using

Hamming distance as the distance measure or using the classical k-means/k-modes

algorithms after representing each tree as a vector in the Euclidean space. Therefore,

in the computational experiments to compare the PCA methods for tree-structured

data, the tree k-means algorithm with vertex / edge overlap is used. In the rest of the

thesis, we refer to this algorithm as tkmV EO.

To measure the similarities between two partitions of n trees into k clusters, adjusted

Rand index (ARI) is used [6]. Mathematically, it is equivalent to

Adj. Rand Index =

∑k
i=1

∑k
j=1

(
pij
2

)
−

∑k
i=1 (

pi·
2 )

∑k
j=1 (

pi·
2 )

(n2)

1
2
(
∑k

i=1

(
pi·
2

)
+
∑k

j=1

(
p·j
2

)
)−

∑k
i=1 (

pi·
2 )

∑k
j=1 (

p·j
2 )

(n2)

. (5.1)

Here pi·, p·j , and pij represent the number of trees in cluster i in the original parti-

tion, the number of trees in cluster j in the generated partition, and the number of

trees in cluster i in the original partition and in cluster j in the generated partition,

respectively.

The PCA methods for tree-structured data, RTC and tkmV EO are coded in MATLAB

R2020b. They are run on an Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 8GB

RAM Windows 10 PC. Computation times are measured by CPU time. The details of

the computational experiments on synthetic data are given in Section 5.1 and on real

data in Section 5.2.

5.1 The Performances of PCA Methods on Synthetic Data Sets

In order to conduct computational experiments on synthetic data, a random tree set

generator is developed. This generator is able to generate sets of trees with different

skewness, density, and height properties. We use this generator to create synthetic

data sets as explained in 5.1.1.
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5.1.1 A Random Tree Generator

To generate random rooted labeled tree sets, we propose a novel algorithm and name

it as Random Tree Constructor (RTC) algorithm. It simply starts with constructing a

complete tree which is named as the generator tree, denoted by GT , whose edges are

then used to induce the trees, and then computes the number of edges for each tree.

For each tree, it constructs an edge set which is a subset of E(GT ) and includes a

predetermined number of edges. At the end, trees are constructed as trees induced by

the corresponding edge set. The steps of the RTC algorithm are given in Algorithm

3.

There are six input parameters for the RTC algorithm. The first one is m, limiting the

maximum number of children of any node on a tree, e.g., if m = 2, then the generated

trees would be binary trees. n specifies the number of trees in the generated set. h

represents the maximum height of a generated tree. d and s are the mean and the

standard deviation of the normal distribution, which is used to compute the number

of edges in the trees. Lastly, the skewness factor, f , determines the dispersion of the

edges. The output of the algorithm is a generated coherent set of trees. The algorithm

starts with the initialization step where the generator tree GT is built as the complete

m-ary tree with height h.

After the initialization step, the algorithm generates n many random integers by

rounding a sample of n normally distributed random numbers with mean d |E(GT )|
and standard deviation s |E(GT )|. Note that the number of edges on a tree can be

calculated as a product of the number of edges on the generator tree and a ratio be-

tween 0 and 1. This ratio shows the fullness of the complete tree, and it is named as

the density in the RTC algorithm.

The construction step starts with initializing each edge set as the empty set. After

that, it selects a predetermined number of edges from E(GT ) for all trees. Note that

an edge cannot be added if its parent edge is not in the edge set. Selection of the

edges starts with initializing the sequence of the possible edges, PE, as the edges of

GT that joins the root and its m children, in the left-to-right order. Then the iterative

edge selection process starts with assigning probabilities to the edges where the sum
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Algorithm 3: RTC

1 Input: The limit of the number of children m, the number of trees n,

2 the height of the generator tree h,

3 the density distribution parameters d and s, and the skewness factor f .

4 Initialization: Build the generator tree.

5 Let GT be the generator tree as the complete m−ary tree with height h.

6 Determination: Compute the number of edges for each tree.

7 for i=1 to n do

8 Assign ci as the rounded value of a number randomly generated with

N( d |E(GT )| , (s |E(GT )|)2 )
9 end

10 Construction: Construct the trees.

11 Let Ei = ∅ be the edge set of i−th tree for i = 1, . . . , n.

12 for i=1 to n do

13 Let PE be the sequence of the possible edges where for k = 1, . . . ,m.

14 for j=1 to ci do

15 Let pk be the probabilty of selecting the k−th edge on PE where

16
∑|PE|

k=1 pk = 1 and pk = fpk−1 for k = 2, . . . , |PE|.
17 Using pks select a random integer between 1 and |PE|
18 and assign k∗ as this integer.

19 Ei = Ei ∪ {PEk∗}
20 if ch(PEk∗) ̸= ∅ then

21 Assign PEk∗+m, . . . , PE|PE|+m−1 as PEk∗+1, . . . , PE|PE|.

22 Assign PEk∗ , . . . , PEk∗+m−1 as the children set of selected edge

ch(PEk∗) in the left-to-right order.

23 else

24 Remove PEk∗ from PE.

25 end

26 end

27 Construct ti as the tree that is induced by Ei.

28 end

29 return {t1, t2, . . . , tn}
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of all probabilities is equal to 1. The probability of the k−th edge on PE, denoted by

pk, is equal to fpk−1, for k ≥ 1 values. If the skewness factor is less than one, then

the trees tend to be left-skewed, and if it is more than one, then the trees tend to be

right-skewed. Hence, the skewness factor shows the dispersion of the edges on a tree,

and it is referred to as skewness in the RTC algorithm. Using pks, the edge from PE

is randomly selected and added to the corresponding set of edges. In order to update

the sequence of the possible edges, if the selected edge is not a leaf edge on GT , then

its children edges are added to PE in the left-to-right order, and following edges on

PE are shifted, otherwise only the selected edge is removed from PE. At the end of

the iterative edge selection, the corresponding tree is induced by the edge set.

By controlling the parameters of the RTC algorithm, one can create trees having dif-

ferent properties. Thus, the performances of the methods given in Chapter 4 can be

tested on these controllable randomly generated tree sets. In Section 5.1.2, we design

different computational experiments, test the performances of the methods on them,

and give the computational results and interpretations of the results.

5.1.2 Computational Experiments on Randomly Generated Tree Sets

Data sets with two clusters are considered for testing the performances of the meth-

ods. For each data set, two groups of trees are generated by the RTC algorithm.

Hence, each tree on a data set belongs to one of the two groups, and thus we have the

original partition of the trees. For constructing the data sets, the input parameter set

of the RTC algorithm is constructed as follows. For each group of trees, m and n are

taken as 2 and 100, respectively, i.e., there are 100+100=200 binary trees on each data

set. h is considered as 5 or 10, and the standard deviation of the normal distribution,

s, is taken as 0.01 and 0.001 with respect to the value of h. The density levels are

considered as a number between 0 and 1, and the skewness levels are taken as one of

the following values: 0.25 (Too Left), 0.5 (Left), 1 (Uniform), 2 (Right), and 4 (Too

Right). One can generate a data set with two clusters by inputting different parameter

sets for two groups of trees. Therefore, different types of instances can be generated

by changing the parameters.

In this chapter, we generate 42 instances by systematically changing the density, skew-
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ness, and height parameters to analyze the performances of the methods on data sets

having different cluster structures. To account for randomness, ten replications are

made for each instance.

Each data set is inputted to VMAX, SMIN, and DMIN methods. For the data sets

having small and big trees, the number of principal components is given as 32 and

30, respectively. Then each projected data set is inputted into tkmV EO. Since this

algorithm is dependent on the initialization, for each projected data set, tkmV EO is

run for ten initializations, and the best solution is reported as the generated partition of

the projected data set. Note that in tkmV EO, each initialization is constructed with a

randomly selected centroid tree which is obtained by using the Bernoulli distribution

where the probability of an edge is obtained by dividing the frequency of the edge by

the number of trees. The generated partitions and the original partitions are compared

using the ARI, and the average ARI scores out of ten replications are presented as

the performances of the methods on an instance for a specific number of principal

components.

As an example, the performance results of the methods for a given number of princi-

pal components (PCs) in an instance are given in Table 5.1. This instance is generated

with the following parameters. For both of the groups of trees, the height of the trees

h and the skewness level are fixed as 5 and Too Left, respectively. In each data set,

there are two clusters in different densities, and the pair of density levels are consid-

ered as (0.99-0.95), where the first number refers to the density level in the first group

of trees, and the latter is for the second group.

Since h is fixed as 5 in the instance, the results of all possible principal components

are given in Table 5.1. This is because the complete binary tree with h = 5 has 32

leaves. Therefore, when the number of principal components is 32, the ARI scores

of all methods show the performance of the clustering algorithm on the original data

set, i.e., the detectability of the cluster structure in the original data set. Observe that

these ARI scores of each method are the same, 0.70. Therefore for this instance, it

can be concluded that the cluster structure in the data sets is hard to detect. However,

it can be seen in Table 5.1 that after 4 principal components, the ARI scores of both

proposed methods (VMAX and SMIN) are more than 0.6, while the ARI score of the
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Table 5.1: The adjusted Rand index scores of the PCA methods for tree-structured

data for the instance where h = 5, skewness: Too Left for all trees, and the pair of

density levels: (0.99-0.95)

# of PCs VMAX SMIN DMIN # of PCs VMAX SMIN DMIN

1 0.38 0.38 0.00 17 0.70 0.65 0.42

2 0.52 0.55 0.00 18 0.66 0.70 0.42

3 0.55 0.55 0.00 19 0.71 0.66 0.42

4 0.61 0.61 0.00 20 0.71 0.71 0.42

5 0.65 0.65 0.00 21 0.70 0.70 0.42

6 0.65 0.67 0.00 22 0.70 0.70 0.42

7 0.65 0.62 0.00 23 0.70 0.70 0.42

8 0.67 0.65 0.03 24 0.70 0.71 0.42

9 0.70 0.66 0.03 25 0.70 0.70 0.42

10 0.65 0.65 0.03 26 0.70 0.70 0.42

11 0.65 0.73 0.03 27 0.70 0.70 0.46

12 0.70 0.71 0.03 28 0.71 0.70 0.46

13 0.70 0.70 0.03 29 0.70 0.70 0.46

14 0.70 0.70 0.03 30 0.70 0.70 0.46

15 0.64 0.67 0.03 31 0.70 0.70 0.43

16 0.70 0.70 0.42 32 0.70 0.70 0.70
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existing method (DMIN) is almost zero for the first 15 principal components. Hence,

for this instance, it can be concluded that the performances of the proposed methods

are better than the existing method, and they are successful in keeping the useful

information.

To investigate the effects of the density, skewness, and height on the performances of

the methods, 42 instances are grouped as four patterns. These patterns are

1. Density-Different Clusters on Small Trees (h = 5),

2. Density-Different Clusters on Big Trees (h = 10),

3. Skewness-Different Clusters on Small Trees (h = 5),

4. Skewness-Different Clusters on Big Trees (h = 10).

In the first two patterns, different density levels for two groups of trees are considered

while fixing the skewness parameter. We aim to analyze the performances of the

methods on density-different clustered data sets on these patterns. In the last two

patterns, different skewness levels are considered while the density levels are fixed to

discover the performances of the methods on skewness-different clustered data sets.

Since we aim to discover the effect of the sizes of the trees on the performances, the

trees in the first and the third patterns are small (limited with height 5), while the trees

are bigger (h = 10) in the second and the fourth patterns.

In Sections 5.1.2.1 - 5.1.2.4, each of the four patterns is explained in detail and the

corresponding results are presented in Figures 5.1 - 5.4, respectively. These figures

include panels where each one of them presents the results on an instance. In these

figures, all panels that are in the same row are for the same skewness levels, e.g.,

in Figure 5.1, all top three panels presents the results of the instances with Too Left

skewness level, and these levels are written in bold on the left-hand side of the figures.

Similarly, all panels that are in the same column are for the same density levels, e.g.,

all three panels in the left column in Figure 5.1 presents the results of the instances

with the pairs of density levels (0.99-0.95). In these panels, the x-axis and y-axis

represent the number of principal components and adjusted Rand index, respectively.

The solid, dotted, and dashed lines show the performances of VMAX, SMIN, and
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Figure 5.1: Clustering performances of the PCA methods for tree-structured data on

density-different data sets with h = 5

DMIN methods, respectively.

5.1.2.1 PCA Methods on Density-Different Clusters on Small Trees

In this set of experiments, the maximum possible height of a tree is limited to 5.

For both of the groups, the skewness level is fixed as Too Left, Left, and Uniform.

In each data set, there are two groups in different densities, and the pairs of density

levels are taken as (0.99-0.95), (0.9-0.5), and (0.5-0.1). We obtain 9 instances using

the combinations of these parameters. As explained in 5.1.2, the ARI scores of the

methods are obtained, and they are given in Figure 5.1.

In the instances with Uniform skewness level, there is no cluster structure (see Figure

5.1-(g),(h),(i)). It is because the number of common edges within a cluster is not

enough to make trees from the same group similar. In these data sets, the ARI scores
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of the methods are negligible, as expected. Figure 5.1-(i) is an exception since in

this instance, the ratio of the density levels (0.5/0.1=5) is extremely high. In this

instance, all methods are successful in leading high clustering accuracies using about

5 principal components.

In the instances with skewness and (0.99-0.95) density level, there is an unclear clus-

ter structure in the data sets as they are presented in Figure 5.1-(a),(d). In these

instances, while VMAX and SMIN generate projected data sets that can be well clus-

tered using less than 5 principal components, DMIN method needs to use 16 principal

components to get a similar result. Observe that for 16 principal components, still the

ARI score of DMIN method is lower than the ARI scores of the proposed methods.

The successful performances of the proposed methods are due to the way they select

the treelines as their principal components. Since the principal component selections

in the proposed methods are variance-based, the trees from the group generated with

0.99 density level have all edges of their principal component, but some of the trees

from the group generated with 0.95 density level do not have some edges of this prin-

cipal component. Hence, the projections of the trees from different groups of trees

become different from each other, and it will be easy to cluster the projected trees.

However, DMIN method selects its principal component such that all trees from both

groups have all edges of this principal component. This is because of the objective of

DMIN method, which is maximizing the total number of edges on the projections of

trees.

There is a clear cluster structure in the instances with Too Left and Left skewness

levels and (0.9-0.5) and (0.5-01) pairs of density levels (see Figure 5.1-(b),(c),(e),(f)).

In these instances, projected trees generated by each of the methods are successfully

clustered using a few principal components. Still, there is a difference between the

ARI scores of proposed methods and DMIN, but it is not as significant as in the data

sets having unclear cluster structure. It is because, in the data sets having a cluster

structure, DMIN method selects the treelines that are common in all trees, which

results in no variety in the projections of the trees. Nevertheless, there are only a few

common treelines in the data sets having a clear cluster structure. Hence, the ARI

score of DMIN method reaches the ARI scores of VMAX and SMIN methods using

less than 10 principal components.
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Therefore, it can be concluded that the proposed methods perform better than DMIN

method in revealing (if any) the cluster structure of the density-different cluster struc-

tured data sets having small trees using fewer principal components. However, it

becomes more challenging to make this conclusion as the cluster structure becomes

clearer.

5.1.2.2 PCA Methods on Density-Different Clusters on Big Trees

Again, here 9 instances are obtained using the following parameters. The height

of trees is up to ten (h = 10) in this set of experiments. For both groups in the

data sets, the skewness level is fixed as Too Left, Left, and Uniform. The pairs of

density levels are considered as (0.099-0.095), (0.09-0.05), and (0.05-0.01). Here the

maximum number of principal components (30) is less than the number of treelines

on the support tree of the data sets. Thus, the ARI score for the highest principal

component does not show the clustering performance of the original data, but this

value can give an idea about the detectability of the cluster structure in the data set.

The ARI scores of the methods are computed with a similar procedure as in Section

5.1.2 which are presented in Figure 5.2.

For Figure 5.2, similar comments made for Figure 5.1 can be made because the pre-

sented results are similar. Therefore, it can be concluded that for density-different

data sets (having small or big trees), the amount of the useful information carried by

the principal components is higher on the proposed methods than the existing method.

Note that there is no significant difference in the performances of VMAX and SMIN

methods on these data sets.

For a data set having density-different clusters, the running time of methods to gen-

erate the projected trees for a given number of principal components is less than 3

seconds. However, the computation time for tkmV EO is significant, and it increases

with the number of edges on the trees. For example, for the instance with h = 10,

fixed skewness level Left and the pair of density levels (0.09-0.05), tkmV EO consumes

105 seconds on average to cluster the original data, while it needs only 3.8, 4.6, and

7.0 seconds in average to cluster the projected data sets generated by VMAX, SMIN,

DMIN, respectively, using 10 principal components. It concludes that clustering the
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Figure 5.2: Clustering performances of the PCA methods for tree-structured data on

density-different data sets with h = 10
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data set through trees generated by the methods decreases computation time for clus-

tering without sacrificing the quality of cluster structure.

5.1.2.3 PCA Methods on Skewness-Different Clusters on Small Trees

In this set of experiments, 12 instances are generated with the following parameter

settings. h is taken as 5 and the density level is fixed as 0.7 and 0.3 for both of the

groups in a data set. The pairs of skewness levels are considered as (Left-Uniform),

(Left-Right), (Too Left-Left), (Too Left-Uniform), (Too Left-Right), and (Too Left-Too

Right). The ARI scores of the methods are computed with a similar procedure as in

Section 5.1.2 which are displayed in Figure 5.3.

In the instances with close skewness levels, there is no cluster structure (see Figure

5.3-(e),(f)). It is because the number of common edges between two groups of trees

are so close to the number of common edges within the groups of trees. As expected,

the ARI scores of the methods are insignificant in these instances.

There is an unclear cluster structure in the instances with (Left-Uniform) and (Too

Left-Uniform) pairs of skewness levels (see Figure 5.3-(a),(b),(g),(h)). It is because

some of the trees from the group with Uniform skewness level may be left-skewed,

and separating them from the other group of trees is difficult. In these instances,

using only 2 principal components, the proposed methods reach the ARI score of the

clustering performance of the original data. However, DMIN method needs more

than 5 principal components to obtain a similar result. This difference between the

performances is more significant in the instances with 0.7 density level than in the

ones with 0.3 (see Figure 5.3-(a),(g)). When using less than 15 principal components,

DMIN method fails in generating projected data to be clustered as the original data.

In the remaining instances, a clear cluster structure exist as it can be seen in Figure

5.3-(c),(d),(i),(j),(k),(l). All methods generate projected data sets that can be well

clustered using a few principal components. However, in the instances with 0.7 den-

sity level, while 1 principal component is sufficient for VMAX and SMIN methods to

reach the clustering performance of the original data, DMIN needs about 5 principal

components since it initially selects the common treelines of the trees. This difference
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Figure 5.3: Clustering performances of the PCA methods for tree-structured data on

skewness-different data sets with h = 5
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is not observed in the instances with 0.3 density level because there is no common

treeline in these instances.

It can be concluded that if there is a skewness-different cluster structure in a data set

having small trees, then the principal components selected by the proposed methods

are much useful than the ones selected by the existing method. As the cluster structure

becomes clearer, i.e., the skewness levels of the sets of trees differ from each other or

their density level decreases, the gap between the methods gets narrow.

5.1.2.4 PCA Methods on Skewness-Different Clusters on Big Trees

Again, here 12 instances are obtained using the following parameters. The height of

trees is up to ten (h = 10), and the density level is fixed as 0.3 and 0.07. The pairs

of skewness levels are considered the same as in Section 5.1.2.3. Here the number of

treelines on the support tree of the data sets are more than the maximum number of

principal components (30), as in 5.1.2.2. The ARI scores of the methods are computed

with a similar procedure as in Section 5.1.2 which are presented in Figure 5.4.

For Figure 5.4, similar comments made for Figure 5.3 can be made because their re-

sults are similar (see Figures 5.3 and 5.4). Therefore it can be concluded that the pro-

posed methods perform better in keeping the useful information in skewness-different

data sets (having small or big trees) than the existing method. As the cluster structure

becomes clearer, the significance of this difference between the performances disap-

pears. Note that there is no remarkable difference in the performances of VMAX and

SMIN methods on the skewness-different data sets.

For a data set having skewness-different clusters, the running time of methods to gen-

erate the projected trees for a given number of principal components is less than 3

seconds. However, the computation time consumed by tkmV EO is remarkable, and it

increases with the sizes of the trees. For example, for the instance with h = 10, fixed

density level 0.3 and the pair of skewness levels (Left-Right), tkmV EO needs more

than 15000 seconds on average to cluster the original data, while it consumes only

3.97, 4.11, and 4.37 seconds in average to cluster the projected data sets generated

by VMAX, SMIN, DMIN, respectively, using 5 principal components. It can be con-
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Figure 5.4: Clustering performances of the PCA methods for tree-structured data on

skewness-different data sets with h = 10
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cluded that clustering the data set through trees generated by the methods decreases

the clustering time without sacrificing the quality of cluster structure.

All in all, it can be concluded that if a (density or skewness different) cluster structure

exists in a data set, projected data sets generated by each of the methods can be

successfully clustered using smaller trees and less computation time. In such data

sets, the performances of the proposed methods are better than the performance of

the existing method. Also, the ARI scores of the proposed methods are not worse

than the ARI score of the existing method, in any case. As the cluster structure

become clearer, the difference between the performances of the methods decreases.

No significant difference is observed between the performances of VMAX and SMIN

methods in synthetic data sets.

5.2 The Performances of PCA Methods on a Real Data Set

In this section, we test the performances of the methods on real data. The set of

brain artery structures of 98 individuals, shared by Bendich et al. [28] is used as

the real-world data here. Descriptive features sex, age, and handedness for each pa-

tient are also given in the data set. As a preprocessing, we remove transgender and

ambidextrous individuals as is done by Dinler et al. [5], and work with 93 individu-

als. As discussed by Aydin et al. [2], for each brain artery structure, a rooted binary

tree is constructed by representing the branching points as nodes and the vessels as

edges. In these trees, only the vessels whose median radius is more than 0.5 mm are

represented. The labels of the nodes are obtained as follows: the child with more

descendant nodes is placed as the left child, and for a given node, all left children get

the same label in all trees.

In this set of trees, the maximum height of a tree is 25, where the average is 15.27.

The number of edges in the support tree is 942, there are 451 leaves, and the height is

25. The average number of edges is 95.65, where the maximum is 188. The average

density of trees is almost 0.000003, and thereby the density level of the set is more

sparse than the generated data sets in Section 5.1.

In Figure 5.5, the support tree of the tree set is given. Since the nodes with more

53



Figure 5.5: The support tree of the real data set
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descendants are placed on the left, the support tree is left-skewed. Computational

results of the PCA methods for tree-structured data on the brain artery data set are

presented in the following section.

5.2.1 Computational Experiments on Real Data

Original partitions of the trees in simulated data sets are known as they are constructed

with given input parameters. Therefore, it is possible to compare the generated parti-

tions of the projected trees with the original partitions. However, for the real data set

introduced in Section 5.2, the clustering partitions of the original trees are unknown.

Moreover, the number of clusters in the data set is unknown, and even there may ex-

ist no cluster structure in the data set. Hence, first, we analyze the cluster structure

in the brain artery data set. In order to do that, from 2 to 6 clusters, we cluster the

data set with tkmV EO. For each number of clusters between 2 and 6, 100 initializa-

tions are made, and the best objective function value is considered. For detecting the

right number of clusters, we use the well-known elbow method and try to observe the

biggest change in the objective function value. From 2 to 6 cluster case, the objective

function values are 29.38, 30.25, 30.96, 31.53, and 31.99, respectively. Since the ob-

jective function value follows a linear increase with the number of clusters, we accept

that the right number of clusters in the brain artery data set as 2. Later, the data set

is clustered with the number of clusters 2, and the clustering result is accepted as the

original partitions.

To monitor the performance of all methods on the real data, we follow the same pro-

cedure as in Section 5.1.2, with a slight change that generated partitions are obtained

with 100 initializations on tkmV EO instead of 10. We first use VMAX, SMIN, and

DMIN to generate projected trees for a given number of principal components. Then

the projected trees are clustered into 2 clusters by using tkmV EO. Again the clus-

tering algorithm is run for 100 initializations. ARI score for a generated partition is

reported considering the original partitions of the trees in the brain artery data set.

In Figure 5.6, the first three principal components of VMAX, SMIN, and DMIN are

shown. The first principal component selected by DMIN is the leftmost treeline in

the figure and shown by the dashed line. The first principal component selected by
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Figure 5.6: Principal components of the PCA methods for tree-structured on the sup-

port tree of the real data set
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VMAX and SMIN is the same, and it is shown by the dotted line. This treeline is also

the second principal component selected by DMIN method. Moreover, the second

principal component selected by the proposed methods is the first principal compo-

nent selected by DMIN. Therefore, the first two principal components constructed by

the methods are the same, just except the order. Hence we expect that the clustering

performances of all three methods are the same on two principal components. The

third principal component selected by DMIN is the solid line on the left-hand side.

VMAX selects the treeline that is represented by the dash-dotted line as its third prin-

cipal component. The treeline represented by the rightmost solid line in Figure 5.6 is

selected as the third principal component by SMIN.

The ARI scores of VMAX, SMIN, and DMIN on the brain artery data set are given

in Figure 5.7. Here each method is presented with a different type of line the solid

line for VMAX, the dotted line for SMIN, and the dashed line for DMIN. In this plot,

the results of the first 50 principal components for each method are shown. The ARI

scores of all methods are above 0.7, for 7 and more principal components. In addition,

all principal component trees of the three methods have less than only 110 edges for

the first 7 principal components, while the whole support tree has 930 edges. Hence,

it can be concluded that the projected trees generated by any of the methods can be

successfully clustered using about 12 percent of the total number of edges on the

support tree.

Since the first principal components are the most informative ones in PCA and after 7

principal components, all methods successfully keep the cluster structure of the data

set, we analyze the first 6 principal components of the methods. For the first principal

component, while the clustering of the projected trees generated by DMIN is not suc-

cessful with 0.15 ARI score, clustering of projected trees generated by VMAX and

SMIN has a higher ARI score of 0.72. This big gap between the methods shows that

our proposed methods overperform the existing method in the literature on select-

ing the first principal component and the first principal component of the proposed

methods is more informative so that the cluster structure is easily be detected via this

principal component. For 2 principal components, the ARI scores of all methods are

0.76, which is better than the one in the first principal component as expected. Again,

as in the classical PCA method, the information gain with the second principal com-
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ponent in the proposed methods is gradual. But differently in DMIN second principal

component is more informative than the first one.

While the performances of SMIN and DMIN decrease in the third principal compo-

nent, the performance of VMAX remains the same. For the 4th to 6th principal com-

ponents, both ARI scores of VMAX and DMIN are more than 0.83. However, the

ARI score of SMIN is less than 0.7 on these principal components. The numbers of

edges on the 7th principal component tree constructed by VMAX, SMIN, and DMIN

are 103, 88, and 105, respectively. Note that 7 principal components are sufficient for

all methods to reveal the cluster structure.

It can be concluded that all three methods are successful in keeping the clustering

information on the projected data, while our proposed methods perform better than

the existing method in selecting the first principal component, and only 1 treeline is

sufficient for VMAX to extract the cluster structure of the real data.
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CHAPTER 6

MULTIDIMENSIONAL SCALING FOR TREE-STRUCTURED DATA

6.1 Multidimensional Scaling

For given pairwise distances between data objects and a user defined positive integer

t, the multidimensional scaling (MDS) maps the data objects into data points in Rt

in such a way that the pairwise distances between the generated data points are as

close as possible to the original pairwise distances. MDS can be used to visualize

the data objects or to project high-dimensional data onto a lower dimension. There

are different methods to perform the MDS. While classical MDS [10] uses eigenvec-

tors to extract the coordinate matrix, formulating an optimization problem to find the

optimal coordinates of the data objects is also commonly used in the literature, see

e.g, the generalized MDS [12]. There are different objective functions used in these

optimization models for MDS. One of the most commonly used objective functions

is minimizing the sum of squares of pairwise differences between the given distances

and the distances between the generated data points.

MDS for tree-structured data is a less studied area. Therefore, inspired by the classical

MDS, we develop the concepts of MDS for tree-structured data. We assume that we

are given a coherent set of trees. In our implementation of the MDS for tree-structured

data, we consider the edges as the dimensions. We select some edges from the support

tree and call the tree that is induced by the selected edges the scaling tree. We project

all trees onto the scaling tree in such a way that the pairwise distances between the

projections are proportionally close to the original pairwise distances between the

trees.

Since MDS for tree-structured data selects the edges to be on the projected trees, it
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can be interpreted as a feature selection method. Note that the user defines the number

of edges on the scaling tree and thereby limits the number of edges in the projected

trees. The objective function aims to keep as much information as possible about the

original tree-structured data utilizing only k edges in the scaling tree. In the rest of the

chapter, we detail our proposed MDS definition for tree-structured data and propose

exact and heuristic methods to perform it.

6.2 MDS for Tree-Structured Data - Problem Definition

We are given a set of coherent trees S = {t1, t2, . . . , tn}, where ti = (Ni, Ei), and a

user defined positive integer k. Let ST be the corresponding support tree. We aim to

select k edges from ST in such a way that the graph induced by the selected edges

forms a subtree of ST with the same root. This subtree is called as the scaling tree

and is denoted by sck. In our implementation of the MDS, we try to find the best sck

such that the original pairwise distances and the distances between the projections of

the trees onto sck, i.e., the distances between the trees Pk(ti) = ti∩sck, are as close as

possible. For the distance measure, we use the Hamming distance. Note that for two

projections Pk(ti) and Pk(tj), the Hamming distance between them can be at most k.

Therefore, if d(ti, tj) is much bigger than k, then there would be no way to keep the

pairwise distances close after the projection. For this reason, instead of keeping the

pairwise distances close, we aim to keep them proportionally close.

We are now ready to provide the optimization problem we define to be able to perform

MDS for tree-structured data. Given a set of coherent trees S = {t1, t2, . . . , tn} and

a positive integer k, find a scaling tree sck with |sck| = k and a scaling parameter

α ≥ 0 such that

z =
n−1∑
i=1

n∑
m=i+1

| α d(ti, tm)− d(Pk(ti), Pk(tm)) | (6.1)

is minimized. Here the first term inside the absolute value α d(ti, tm) scales original

pairwise distances. The second term d(Pk(ti), Pk(tm)) is the distances between the

projections of the trees. An alternative way to perform the MDS would be scaling
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the distances between the projections instead of scaling the original distances. In this

case, the objective function would be

z′ =
n−1∑
i=1

n∑
m=i+1

| d(ti, tm)− αd(Pk(ti), Pk(tm)) | . (6.2)

In this thesis, we study the first alternative, i.e., the objective function (6.1), while

we have observed after some computational experiments that the second alternative

may be more useful in some cases. We next provide a mixed-integer programming

formulation followed by two greedy heuristics to minimize (6.1).

6.3 Multidimensional Scaling for Tree-Structured Data - Optimization Model

For the problem of performing MDS for tree-structured data as explained in Sec-

tion 6.2, we propose an exact method and name it as Multidimensional Scaling for

Tree-Structured Data - Optimization Model (MDST) method. It is basically an ex-

tension of the classical MDS algorithm, which selects the edges to be on the scaling

tree while keeping the pairwise distances between trees proportionally close. Let

S = {t1, t2, . . . , tn} be a coherent set of trees, where ti = (Ni, Ei). ST be the cor-

responding support tree, and k be a user defined positive integer. The edge selection

process of MDST is formulated as a mathematical model, which can be written in

closed form as follows.

(MDST closed form)

Minimize z =
n−1∑
i=1

n∑
m=i+1

| α d(ti, tm)− d((ti ∩ sck), (tm ∩ sck)) | (6.3)

subject to

| E(sck) |= k (6.4)

asc(e) ∈ E(sck) ∀e ∈ sck (6.5)

α ≥ 0 (6.6)
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where the objective function (6.3) is equivalent to (6.1). The scaling parameter is not

limited by an upper bound in this model but it is expected to take a value between zero

and one. The first constraint of the model (6.4) assigns the number of edges on the

scaling tree to the user defined number k. Since all combinations of selected edges

may not induce a tree, we write the second constraint of the model which provides

that an edge can be selected only if its ascending edges are selected.

Let D = [Dij] be the matrix where Dij takes the value 1 if i−th tree has the j−th

edge of ST (in any order) and 0 otherwise. If we define xj as the decision variable

which takes the value 1 if and only if j−th edge of ST is on the scaling tree sck, then

the open form of the mathematical model of MDST can be written as

(MDST open form)

Minimize z =
n−1∑
i=1

n∑
m=i+1

| α ((

|E(ST )|∑
j=1

Dij +Dmj)− 2 (

|E(ST )|∑
j=1

Dij Dmj))

− ((

|E(ST )|∑
j=1

(Dij +Dmj) xj)− 2 (

|E(ST )|∑
j=1

Dij Dmj xj)) | (6.7)

subject to
|E(ST )|∑
j=1

xj = k (6.8)

xj ≤ xpar(j) ∀j ∈ E ′ (6.9)

α ≥ 0 (6.10)

xj ∈ {0, 1} ∀j ∈ {1, . . . , |E(ST )|}. (6.11)

Here the number of edges in the union and intersection of two trees ti and tj are

computed as
∑|E(ST )|

j=1 Dij +Dmj and
∑|E(ST )|

j=1 (Dij Dmj), respectively. Note that if

we multiply the summed terms with xj , then they would be equal to the union and

intersection of the projections of ti and tj on sck. The first constraint (6.8) is for

assigning the number of edges on the scaling tree. The second constraint (6.9) is for

keeping the tree-structure of the scaling tree, where par(j) is the index of the parent

edge of j−th edge, and E ′ is defined as the set of all indices of the edges in ST that

have a parent edge. (6.9) provides that an edge cannot be on the scaling tree if its

parent is not on it. This constraint also satisfies that an edge cannot be on the scaling
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tree if its all ascending edges are not on it. (6.10) is the same as (6.6), and (6.11) is

written since the xj is a binary variable for any value of j.

Since this mathematical model can easily be linearized, we obtain a mixed-integer

linear programming (MILP) model. We define a set of decision variables, dim, to rep-

resent the absolute difference between αd(ti, tm) and d(Pk(ti), Pk(tm)) to linearize

the model. Here the objective function value of the MILP model is the sum of dims

for all pairs of trees. We add two constraint sets (6.13) and (6.14) to compute dim

values. The resulting MILP model of MDST method is given below.

(MDST MILP)

Minimize z =
n−1∑
i=1

n∑
m=i+1

dim (6.12)

subject to

dim ≥ α ((

|E(ST )|∑
j=1

Dij +Dmj)− 2 (

|E(ST )|∑
j=1

Dij Dmj))

− ((

|E(ST )|∑
j=1

(Dij +Dmj) xj)− 2 (

|E(ST )|∑
j=1

Dij Dmj xj))

∀i ∈ {1, . . . , n− 1} & ∀m ∈ {i+ 1, . . . , n} (6.13)

dim ≥ −

α ((

|E(ST )|∑
j=1

Dij +Dmj)− 2 (

|E(ST )|∑
j=1

Dij Dmj))

−((

|E(ST )|∑
j=1

(Dij +Dmj) xj)− 2 (

|E(ST )|∑
j=1

Dij Dmj xj))


∀i ∈ {1, . . . , n− 1} & ∀m ∈ {i+ 1, . . . , n} (6.14)

|E(ST )|∑
j=1

xj = k (6.15)

xj ≤ xpar(j) ∀j ∈ E ′ (6.16)

α ≥ 0 (6.17)

xj ∈ {0, 1} ∀j ∈ {1, . . . , |E(ST )|} (6.18)

The MILP model of MDST is explained on an example. For the set of trees given in

Figure 3.1, the model is run for k ∈ {1, . . . , 13} values. Note that the matrix D is the
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Table 6.1: The results of MDST model on the set of trees given in Figure 3.1

k Edges of sck α z z′

1 2 0 7 —

2 2,4 0.13 9.1 70

3 3,7,14 0.25 11.3 45.2

4 2,3,7,14 0.29 11.6 40

5 2,3,4,7,14 0.38 13.9 36.6

6 2,3,4,6,7,13 0.43 12.9 30

7 2,3,6,7,13,14,15 0.50 12.5 25

8 2,3,4,5,7,8,10,11 0.56 12.9 23

9 2,3,4,5,7,8,10,11,14 0.67 12 17.9

10 2,3,4,5,6,7,8,10,11,14 0.71 12.4 17.5

11 2,3,4,5,6,7,8,9,10,11,14 0.82 11 13.4

12 2,3,4,5,6,7,8,9,10,11,13,14 0.89 6.6 7.4

13 2,3,4,5,6,7,8,9,10,11,13,14,15 1 0 0

same as the matrix D defined in Section 4.4. The results are shown in Table 6.1. The

first column is for the k values given to the model that assigns the number of edges on

the scaling tree. In the second column, an edge on the scaling tree that joins a node

u with its parent v is represented by u, e.g., "5" represents the edge joining node 5

with node 2, which is the parent of node 5. The results of the scaling parameter and

the objective function values are given in the third and fourth columns, respectively.

In the last column, objective function values of (6.2), z′, are given, where z′ = z/α.

Note that in terms of z′, these solutions are not optimal.

From Table 6.1, it can be concluded that α values tend to increase as the number of

edges on the scaling tree increases, as expected. z′ values decrease as the number of

edges on the scaling tree increases. Note that, for k ≥ 2, sck−1 does not have to be a

subtree of sck, e.g., sc2 has the edge joining the root and node 2 while sc3 does not

have it.

As illustrative examples, the scaling tree with 5 edges, sc5, and with 8 edges, sc8,

constructed by MDST method are shown in Figures 6.1 and 6.2, respectively. In
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Figure 6.1: The scaling tree with 5 edges constructed by MDST method (dashed

edges) for the set of trees given in Figure 3.1

Figure 6.2: The scaling tree with 8 edges constructed by MDST method (dashed

edges) for the set of trees given in Figure 3.1
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Figure 6.3: Projections of trees given in Figure 3.1 onto the scaling tree shown in

Figure 6.1
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Figure 6.4: Projections of trees given in Figure 3.1 on the scaling tree shown in Figure

6.2
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these figures, the dashed edges show the edges of the scaling trees. In Figures 6.3

and 6.4, the projections of the trees given in Figure 3.1 onto the scaling tree with

five edges and with eight edges constructed by MDST method are given, respectively.

Here the projections of ti on sck is represented as PMDST (k)(ti). Observe that, in both

figures, the first four projections and last four have different structures where trees in

the first cluster have longer paths on the left side while the longer paths are on the

right side for other trees. Within similarity of clusters are high for both of them. For

this instance, MDST method seems to be successful in keeping the cluster structure

of the data.

Note that, in Figure 6.3 the trees that are in the same cluster are more similar to each

other than the trees in Figure 6.4. This is expected because as the number of edges on

the scaling tree increases, the edges that do not represent the cluster structure would

be selected by the scaling tree as well. Although the objection function value z is

smaller when k = 8, the cluster structure is more noticeable when k = 5. Thus,

the objection function value may not represent the amount of useful information car-

ried by the scaling tree. Therefore, computational studies are needed to broaden our

understanding of the performances of MDST methods in different cases, which are

presented in Chapter 7.

6.4 Multidimensional Scaling for Tree-Structured Data - Greedy Forward Al-

gorithm

Since MDST method explained in Section 6.3 finds the optimal solution using an

MILP formulation, it may be impractical on larger data sets. Hence, we propose

two heuristic methods to find satisfactory solutions for multidimensional scaling for

tree-structured data problems. Note that these solutions are not guaranteed to return

optimal selections. We name the first proposed heuristic method as Multidimensional

Scaling for Tree-Structured Data - Greedy Forward Algorithm (MDSTGA) method.

MDSTGA method constructs sc1 as the tree that keeps the pairwise distances propor-

tionally closest where sc1 is induced by the edge set that has only one edge which has

no ascending edges, i.e., E(sc1) = {e} where asc(e) = ∅. Note that, for any m-ary

trees, the number of possible sc1 trees is limited with m since the root has at most m
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many children. For all k ≥ 2, MDSTGA method constructs sck as the tree that keeps

the pairwise distances proportionally closest where sck−1 is a subtree of sck.

Algorithm 4: MDSTGA

1 Inputs: Coherent set of trees S = {t1, t2, . . . , tn} where ti = (Ni, Ei) for

i = 1, . . . , n and the number of edges on the scaling tree k.

2 Initialization: Initialize the possible edges to be in the scaling tree.

3 Let ST be the support tree of S.

4 Let PE be the set of possible edges where e ∈ PE if and only if asc(e) = ∅
5 E(sc0) = ∅
6 for k=1 to K do

7 Selection: Select the edges of the scaling trees.

8 for e ∈ PE do

9 sc′k is induced by E(sck−1) ∪ {e}
10 Find αe that minimizes the objective function value for given sc′k

11 Assign ze as the objective function value obtained by using αe

12 end

13 e∗k = argmin
e∈{PE}

ze

14 Update: Construct the scaling tree and update the possible edges.

15 sck is induced by E(sck) ∪ {e∗k}
16 Remove e∗k from PE.

17 Insert the children set (if any) of the selected edge, ch(e∗k), into PE

18 end

19 return {sc1, sc2, . . . , scK}

The steps of MDSTGA method are given in Algorithm 4. The inputs of the algorithm

are a coherent set of trees S and the number of edges on the scaling tree K. The

output of the algorithm is the set of scaling trees {sc1, sc2, . . . , scK}. The algorithm

starts with an initialization step which initializes the set of possible edges to be in the

first scaling tree. First, it builds the corresponding support tree ST . Then it initializes

the set of possible edges with the edges joining the root with its children. At the end,

it defines E(sc0) as the empty set.
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Table 6.2: The results of MDSTGA method on the set of trees given in Figure 3.1

k Edges of sck α z z′

1 2 0 7 —

2 2,4 0.13 9.1 70

3 2,4,3 0.17 11.5 67.7

4 2,4,3,7 0.29 12.3 42.4

5 2,4,3,7,14 0.38 13.9 36.6

6 2,4,3,7,14,6 0.43 14.9 34.7

7 2,4,3,7,14,6,13 0.50 12.5 25

8 2,4,3,7,14,6,13,9 0.63 13.1 20.8

9 2,4,3,7,14,6,13,9,8 0.70 13.9 19.9

10 2,4,3,7,14,6,13,9,8,5 0.75 14.8 19.7

11 2,4,3,7,14,6,13,9,8,5,11 0.80 12.4 15.5

12 2,4,3,7,14,6,13,9,8,5,11,10 0.89 6.6 7.4

13 2,4,3,7,14,6,13,9,8,5,11,10,15 1 0 0

After the initialization step, the selection and update steps follow for all k ∈ {1, . . . , K}.

The selection step first finds the best scaling parameter value for each edge e in the

set of possible edges and assigns them as αe. Then it selects the edge to be in sck,

denoted by e∗k, as the edge e that minimizes the objective function (6.3) where sck is

induced by E(sck−1) \ e and α = αe. In the update step, sck is induced by the union

of e∗k and E(sck−1). Then PE is updated by removing e∗k and adding children edges

of e∗k. At the end of the algorithm, the set of the scaling trees are returned. Using

this set, for all k ∈ {1, . . . , K}, the projection of a tree ti onto sck can be obtained as

Pk(ti) = ti ∩ sck.

Here we explain how the algorithm finds the best scaling parameter for a given sck.

For i ∈ {1, 2, . . . , n−1} and m ∈ {i, i+1, . . . , n}, the difference term in the objective

function (6.3) (α d(ti, tm)− d((ti ∩ sck), (tm ∩ sck))) takes a positive value when α

is greater than d((ti∩sck),(tm∩sck))
d(ti,tm)

(the critical point of i&m) and a negative value when

α is less than the critical point of i&m. Suppose p many unique critical points of

all i&m pairs are obtained and sorted in ascending order. Then by selecting any two
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consecutive critical points as the bounds, p − 1 intervals for α can be constructed.

If the intervals that are bounded by the biggest critical point and ∞, and smallest

critical point and 0, are added to these p − 1 intervals, then it is obtained that all

possible α values are in these intervals and in each interval, the signs of the value of

the difference terms do not change. Since α value in an interval that minimizes the

objective function value (6.3) is one of the bounds of this interval, for a given sck, the

best value of α is the critical point which gives the minimum objective function value.

Note that best α = ∞ is not possible, and if there is no critical point which is 0, then

best α cannot take the value 0. For sorted critical points, one can find an alternative

best value of α as the critical point that gives the objective function value that is not

greater than the objective function values given by its adjacent critical points and less

than at least one of these values. Therefore, the best α can be found by calculating

and comparing the objective function values of the critical points one by one in an

ascending order starting from the smallest critical point. Moreover, since we know

that, for consecutive values of k, the best α values are close to each other, for k ≥ 2,

we start searching the best α value for sck from the closest critical point to the best

α value for sck−1. Note that the searching is performed in descending order if the

objective function value of the smaller adjacent critical point is less than the objective

function value of the closest critical point to the best α value for sck−1.

We now explain MDSTGA method on given trees in Figure 3.1. At the beginning,

there are two possible edges to be selected: the edges joining the root with node

2 and with node 3. For the first edge, which joins the root and node 2, the sorted

unique critical points
(

d(Pk(ti),Pk(tj))

d(ti,tj)

)
can be calculated as 0, 0.09, 0.1, 0.11, 0.13,

0.14, 0.25, and 0.5. Then, the objective function value for α = 0 is calculated as 7.

Then it is calculated as 13.1 for α = 0.09. Since it is greater than 7, α value for the

edge joining the root and node 2 is found as 0. Consequently, the objective function

value for this edge is found as 7. When the same steps are followed for the edge

joining the root and node 3, α and the corresponding objection function values are

found as 0 and 7, respectively. Since the objective function values of two possible

edges are equal, we arbitrarily select the edge joining the root and node 2 to be the

edge of sc1. Then the set of possible edges, PE, is updated by removing the selected

edge from PE and inserting the children edges of the selected edge into PE, i.e., the
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Figure 6.5: The scaling tree with 8 edges constructed by MDSTGA method (dashed

edges) for the set of trees given in Figure 3.1

edges joining the node 2 with node 4 and with node 5. When the steps are repeated

for all k ∈ {2, . . . , 13} values, the results are obtained as shown in Table 6.2. The

organization of this table is the same with that of Table 6.1. Note that, for all k ≥ 2,

sck−1 is a subtree of sck. Since the selected scaling trees by MDST and MDSTGA

methods are the same for k ∈ {1, 2, 5, 12, 13}, their objective function values z are

the same for these values of k. However, for the remaining k values, the objective

function values z of the scaling trees selected by MDSTGA method are worse than

the ones in Table 6.1.

As an illustrative example, the scaling tree with eight edges, sc8, constructed by MD-

STGA method is shown in Figure 6.5. In this figure, the dashed edges show the edges

of the scaling tree. In Figure 6.6, the projections of given trees in Figure 3.1 onto

the scaling tree with eight edges constructed by MDSTGA method are given. Here

the projections of tree ti onto sck is represented as PMDSTGA(k)(ti). Observe that the

first four projections and the last 4 have different structures where trees in the first

cluster have a longer path on the left side while the other trees have a smaller path

on this side. Within similarity of clusters are high but not as the ones in Figure 6.3

and Figure 6.4. For this instance, MDSTGA method seems to be successful in keep-
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Figure 6.6: Projections of trees in Figure 3.1 on the scaling tree shown in Figure 6.5
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ing the cluster structure of the data, but it is less successful than MDST method as

expected. For further information about the performances of the methods, we design

and explain the computational experiments in Chapter 7.

6.5 Multidimensional Scaling for Tree-Structured Data - Greedy Backward Al-

gorithm

Since MDSTGA method may not select the parents of an informative edge on earlier

steps, we propose its backward version and name it as Multidimensional Scaling for

Tree-Structured Data - Greedy Backward Algorithm (MDSTGB) method. MDSTGB

method is very similar to MDSTGA method, except it starts from sc|E(ST )| = ST

and selects the least informative edges to remove them. For all k ≤ |E(ST )| − 1,

MDSTGB method constructs sck as the tree that keeps the pairwise distances propor-

tionally the closest where sck is a subtree of sck+1 with the same root.

The steps of MDSTGB method are given in Algorithm 5. Since it is very similar to

Algorithm 4, we only explain the differences between the two methods. In the ini-

tialization step, it initializes sc|E(ST )|, not sc0. The selection and update steps are re-

peated for k ∈ {K, . . . , E(ST )−1} values in the opposite way. Therefore, sc′k is con-

structed using sck+1, not sck−1. To update the set of possible edges, the parent of the

selected edge is inserted, not its children. Note that the parent is not inserted if any of

its children is on sck. Lastly, at the end of the algorithm, {scK , scK+1, . . . , sc|E(ST )|}
are returned.

We now explain MDSTGB method on the trees given in Figure 3.1. At the beginning,

there are seven possible edges to be selected to remove since there are seven leaf

edges of the support tree. For the first edge, which joins node 4 and node 8, the sorted

unique critical points
(

d(Pk(ti),Pk(tj))

d(ti,tj)

)
are calculated as 0, 0.67, 0.75, 0.83, 0.86, 0.88,

0.89, 0.90, 0.91, and 1. As a result of the local search around α = 1, which is the

scaling parameter for sc|E(ST )|, the starting critical point of the best α value searching

is determined as 0.91. This is because it gives the objective function value (6.3), 21.1,

which is smaller than the one that α = 1 gives, which is 30. Since critical point 0.91 is

the smaller adjacent of critical point 1, the searching is performed in descending order.
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Algorithm 5: MDSTGB

1 Inputs: Coherent set of trees S = {t1, t2, . . . , tn} where ti = (Ni, Ei) for

i = 1, . . . , n and the number of edges on the scaling tree k.

2 Initialization: Initialize the possible edges to be in the scaling tree.

3 Let ST be the support tree of S.

4 Let PE be the set of possible edges where e ∈ PE if and only if ch(e) = ∅
5 sc|E(ST )| = ST

6 for k = |E(ST )| − 1 to K do

7 Selection: Select the edges of the scaling trees.

8 for e ∈ PE do

9 sc′k is induced by E(sck+1) \ {e}
10 Find αe that minimizes the objective function value for given sc′k

11 Assign ze as the objective function value obtained by using αe

12 end

13 e∗k = argmin
e∈PE

ze

14 Update: Construct the scaling tree and update the possible edges.

15 sck is induced by E(sck+1) \ {e∗k}
16 Remove e∗k from PE.

17 Insert the parent edge of e∗k into PE if its any children is not on sck

18 end

19 return {scK , scK+1, . . . , sc|E(ST )|}
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Table 6.3: The results of MDSTGB method on the set of trees given in 3.1

k Edges of sck α z z′

1 3 0 7 —

2 3,7 0.13 10.1 77.7

3 3,7,2 0.17 11.5 67.7

4 3,7,2,4 0.29 12.3 42.4

5 3,7,2,4,5 0.33 16.7 50.6

6 3,7,2,4,5,10 0.38 15.9 41.8

7 3,7,2,4,5,10,11 0.46 14.1 30.7

8 3,7,2,4,5,10,11,8 0.56 12.9 23

9 3,7,2,4,5,10,11,8,14 0.67 12 17.9

10 3,7,2,4,5,10,11,8,14,6 0.71 12.4 17.5

11 3,7,2,4,5,10,11,8,14,6,15 0.82 11 13.4

12 3,7,2,4,5,10,11,8,14,6,15,13 0.89 6.6 7.4

13 3,7,2,4,5,10,11,8,14,6,15,13,9 1 0 0

Then, the objective function value that α = 0.90 gives is calculated as 21.1. After

calculating them for the other α values, it is found that the best α value for the edge

joining node 4 and node 8 is 0.89. Accordingly, the objective function value for this

edge is found as 10.2. When the same steps are followed for the other possible edges,

the objective function values are obtained as 10.2, 6.6, 13.3, 12, 12.7, 8.9, and 6.6, in

the left-to-right order. Since two edges share the least objective function values, we

arbitrarily select the edge joining node 4 and node 9 to remove it from the scaling tree.

Therefore, sc12 is induced by the edges of ST except the selected edge. Then the set

of possible edges, PE, is updated by removing the selected edge from it. Note that

since the edge joining node 4 and node 8 is still on the scaling tree, the parent edge

(joining node 2 and node 4) is not inserted into PE. When the steps are repeated for

all k ∈ {1, . . . , 11} values, the results are obtained as shown in Table 6.3. Note that,

for all k ≤ |E(ST )| − 1, sck is a subtree of sck+1. Since the selected scaling trees

by MDST and MDSTGB methods are the same for k ∈ {8, 9, 10, 13}, their objective

function values are the same for these values of k. In addition to them, z values

for k = 11 and k = 12 are also equal to each other. However, for the remaining
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k values, the objective function values of the scaling trees selected by MDSTGB

method are worse than the ones in Table 6.1. In order to broaden our understanding

of the performances of the three MDS methods proposed for tree-structured data, we

carry out extensive computational experiments using different data sets in Chapter 7.
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CHAPTER 7

COMPUTATIONAL EXPERIMENTS FOR MDS METHODS FOR

TREE-STRUCTURED DATA

In this chapter, the performances of the proposed MDS methods for tree-structured

data are tested on synthetic and real data sets. To compare the performances of the

methods, we follow a similar procedure as explained in Chapter 5. However, since

these methods use the Hamming distance to measure the distances between the trees,

in the tree k-means algorithm, we consider using Graph Edit Distance as a distance

measure, which is equivalent to the Hamming distance in rooted labeled trees. We

refer to this algorithm as tkmGED.

The MILP model of MDST method is solved using CPLEX Studio IDE 12.10.0.

The heuristic MDS methods for tree-structured data, RTC and tkmGED are coded

in MATLAB R2020b. They are run on an Intel(R) Core(TM) i7-8550U CPU @

1.80GHz, 8GB RAM Windows 10 PC. Computation times are measured by CPU

time. The details of the computational experiments on synthetic data are given in

Section 7.1 and on real data in Section 7.2.

7.1 The Performances of MDS Methods on Synthetic Data Sets

In this section, the performances of MDS methods for tree-structured data are tested

on synthetic data sets. To obtain the performances, we follow a similar procedure as

in Section 5.1.2. Unlike in Section 5.1.2, each group of trees has 25 trees.

We design 23 instances different density, skewness, and height parameters to ana-

lyze the performances of the methods on data sets having different cluster structures.
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Similarly, four patterns are used to investigate the performances of the methods and

effects of density, skewness, and height of trees. 23 instances belong to the following

patterns:

1. Density-Different Clusters on Small Trees (h = 5),

2. Density-Different Clusters on Big Trees (h = 10),

3. Skewness-Different Clusters on Small Trees (h = 5),

4. Skewness-Different Clusters on Big Trees (h = 10).

In the rest of the section, computational results in each pattern are discussed, and re-

sults are presented in Figures 7.1 - 7.4. The organization of the panels in these figures

is the same with that of the panels in the figures in Chapter 5. In these panels, the x-

axis and y-axis represents the number of edges and adjusted Rand index, respectively.

The solid, dashed, and dotted lines show the performance of MDST, MDSTGA, and

MDSTGB methods, respectively.

7.1.1 MDS Methods on Density-Different Clusters on Small Trees

In this set of experiments, the height of trees is up to five (h = 5). The skewness

level is fixed as Too Left, Left, and Uniform. In each data set, there are two groups in

different densities, and the pairs of density levels are (0.99-0.95), (0.9-0.5), and (0.5-

0.1), where the first number refers to the density level in the first group of trees and

the latter is for the second group. We obtain 9 instances, and each instance is repli-

cated ten times. As explained in Section 5.1.2, the generated partitions are obtained

by tkmGED, and the adjusted Rand index (ARI) scores are used to compare the accu-

racies of the generated partitions with respect to the original ones. The computational

results of the proposed MDS methods for each instance are presented in Figure 7.1.

In the instances with Too Left and Left skewness levels, there is a cluster structure

in the data sets as they are presented in Figure 7.1-(a),(b),(c),(d),(e),(f). In these

instances, the projected trees generated by MDSTGB are clustered with having a high

ARI score using less than 10 edges. Note that this is equivalent to about 15 percent
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Figure 7.1: Clustering performances of the MDS methods for tree-structured data on

density-different data sets with h = 5
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of the total number of edges on the support tree. The ARI scores of MDSTGB get

better while the ratio of density pairs increases (see the first two rows of Figure 7.1).

However, since MDST and MDSTGA methods initially select the common edges of

all trees, they need more edges to lead to higher clustering accuracies. If there are p

common edges in the data set, the ARI score of MDST is high when k = p+1. This is

because the scaling trees by MDST method do not have to include previously selected

edges, unlike to MDSTGA method. Hence, the ARI score of MDSTGA method is

not as high as MDST when k = p+ 1.

For the instance having no cluster structure (see Figure 7.1-(g)), the ARI scores of

the methods are negligible. In the instances with (0.9-0.5) and (0.5-0.1) pairs of

density levels and Uniform skewness level, projected trees generated by MDST and

MDSTGB methods are successfully clustered using half of the total number of edges

on the support tree (see Figure 7.1-(h),(i)). Note that, in Figure7.1-(i), the projected

trees generated by MDST and MDSTGB can be clustered easier than the original

data for k values between 10 and 55. This may be because these methods remove the

noises from the original data set.

Therefore, it can be concluded that the proposed backward heuristic algorithm MD-

STGB performs better in leading to successful clustering by generating projected

trees using only a few edges of the support tree. In general, the proposed optimiza-

tion model needs a few more edges than the number of common edges to reach higher

ARI scores, while the proposed forward heuristic algorithm MDSTGA usually needs

more edges since the selected common edges cannot be removed in the following

iterations.

7.1.2 MDS Methods on Density-Different Clusters on Big Trees

In this section, only one instance is considered. Here the height of trees is up to 10.

The skewness level is fixed as Left for all trees, and the pair of density levels is se-

lected as (0.09-0.05). The ARI scores of the methods are computed with a similar

procedure as in Section 5.1.2. Here we run MDST method with the number of edges

that are multiples of 25 in between 1 and 225 and MDSTGA and MDSTGB methods

that are multiples of 5 in between 1 and 225. Note that all support trees of the pro-
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Figure 7.2: Clustering performances of the MDS methods for tree-structured data on

density-different data sets with h = 10

duced data sets have more than 225 and less than 250 edges. The results are presented

in Figure 7.2. In Figure 7.2, the lines between the results are also plotted, e.g., for

MDST method the results for 25 and 50 number of edges are obtained, and these two

points are connected with an artificial line.

It can be seen in Figure 7.2 that the projected trees generated by MDSTGB are well

clustered using less than 10 edges which is about 5 percent of the total number of

edges of the support tree, but MDSTGA method needs approximately 145 edges for

a similar result. The ARI score of MDST is sufficient when k = 100 while it is zero

when k = 50. Note that the bad performance of MDST on 50 edges is due to the

selection of the common edges. The results displayed in Figure 7.2 are consistent

with our earlier results. On data sets having density-different clusters, MDSTGB

performs the best, while MDST outperforms MDSTGA.
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7.1.3 MDS Methods on Skewness-Different Clusters on Small Trees

In this set of experiments, 12 instances are generated with the following parameter

settings. h is taken as 5 and the density level is fixed as 0.7 and 0.3 for all trees. In

each data set there are 2 clusters in different skewness levels and the pairs of skewness

levels are (Left-Uniform), (Left-Right), (Too Left-Left), (Too Left-Uniform), (Too Left-

Right), and (Too Left-Too Right). The ARI scores of the methods are computed with

a similar procedure as in Section 5.1.2 which are displayed in Figure 7.3.

For the instance having no cluster structure (see Figure 7.3-(e),(f)), the ARI scores of

the methods are negligible. In the instances having a cluster structure with 0.3 density

level, the projected trees generated by each of the methods are successfully clustered

using about 5 edges which is less than 10 percent of the total number of edges on

the support tree (see Figure 7.3-(b),(d),(h),(j),(l)). However, it can be inferred from

Figure 7.3-(a),(c),(g),(i),(k) that all methods need more edges for a similar result, in

the instances having a cluster structure with 0.7 density level. In these instances, while

MDST and MDSTGA methods require more than the number of common edges,

MDSTGB needs less than 20 edges to perform well.

Hence, it can be concluded that if there is a skewness-different cluster structure on a

data set having small trees, then the projected trees generated by the proposed back-

ward heuristic algorithm successfully keep this structure data using only a few edges

on the support tree, where this number decreases as the density of the data set de-

creases. For a similar result, the proposed optimization model needs a few more

edges than the number of common edges, and the proposed forward heuristic algo-

rithm demands more edges.

7.1.4 MDS Methods on Skewness-Different Clusters on Big Trees

In this section, only one instance is considered. The height of trees is up to five (h =

5), the density level is 0.3 for all trees, and the pair of skewness levels is (Left-Right).

MDST method is run with the number of edges that are multiples of 50 in between 1

and 450, and MDSTGA and MDSTGB methods are run with k ∈ {5, 10, . . . , 450}.

By following a similar procedure as in Section 7.1.1, with a slight change that only
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Figure 7.3: Clustering performances of the MDS methods for tree-structured data on

skewness-different data sets with h = 5
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Figure 7.4: Clustering performances of the MDS methods for tree-structured data on

skewness-different data sets with h = 10

one replication is made instead of 10, the adjusted Rand index scores of the methods

are computed, which are presented in Figure 7.4. Here the lines between the results

are also plotted.

The support tree of the produced data set has 1290 edges. As it can be seen in Figure

7.4, the ARI scores of all three methods are equal to 1 for the smallest given k values

whose are 5 for the heuristic methods and 50 for the optimization method. The results

presented in Figure 7.4 are consistent with our earlier results in Section 7.1.3.

For this instance, the solution time of the MILP model for k ∈ {50, 100, . . . , 450}
values are obtained as 853, 1261, 2382, 1905, 3660, 3866, 2919, 3265, and 3080

seconds, respectively. MDSTGA and MDSTGB find the edges and project the trees

onto them for the same k values in 61 and 2180 seconds in total, respectively. The
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computational time consumed by tkmGED is not remarkable. For example, it takes

28 seconds to cluster the original data set of this instance. Projected data sets are

clustered in shorter times.

7.2 The Performances of MDS Methods on a Real Data Set

In this section, we test the performances of the MDS methods for tree-structured

data on the brain artery data set, which is introduced in Section 5.2. We assume

that this data set has a bi-cluster structure, and the original partitions of the trees are

obtained as follows. tkmGED is run with 100 initializations, and out of 100 the best

solution is taken as the original partition. Note that in this case, the original partition

is not the same as the one found in Section 5.2.1. MDST method is run with the

number of edges that are multiples of 50 in between 1 and 450 and MDSTGA and

MDSTGB methods that are multiples of 5 in between 1 and 450. MDST method is

limited to 10800 seconds, and for each k value, it does not find the optimal solution

in this limited time. For k ∈ {50, 100, . . . , 450} values, the gap between the best

found objective value and the best possible bound values, which are calculated as the

difference between these values divided by the best found objective function value,

are 40, 61, 56, 56, 69, 47, 64, 87, and 66 percent, respectively. By following the

same procedure that is explained in Section 5.1.2, with a slight change that generated

partitions are obtained with 100 initializations on tkmGED instead of 10, the adjusted

Rand index scores of the methods are computed. The results are displayed in Figure

7.5. Here the lines between the results are also plotted.

From Figure 7.5, it can be seen that the ARI score of MDSTGB is more than 0.9 after

k = 150. For k ∈ {115, 120, . . . , 360} values, the ARI score of MDSTGA is more

than 0.4. However, after k = 365, it decreases because MDSTGA begins to select

noisy edges of the data set. Although for 150, 300, 400, and 450 values of k, the ARI

score of MDST is more than 0.9, it is not stable for all k values. It may be because

the results of MDST are not optimal. For example, when the MILP model is run for

k = 350 with the time limit of 86400 seconds, the gap, objective function value z,

and the ARI score of the method become 22 percent, 10024, and 0.95, respectively.
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Figure 7.5: Clustering performances of the MDS methods for tree-structured data on

the real data set
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It can be concluded that the proposed optimization model is not able to solve medium

size instances in 3 hours, the forward heuristic method cannot represent the cluster

structure using even half of the total number of edges on the support tree, and the

backward heuristic method is successful in keeping the cluster structure on the pro-

jected data using about 15 percent of the total number of edges on the support tree.

7.3 Comparison of the Performances of PCA and MDS Methods for Tree-

Structured Data

Since the performances of PCA methods are calculated for the number of treelines,

unlike edges, comparing the results of the PCA and MDS methods is not straightfor-

ward. However, if the ARI scores of PCA methods are represented for the number

of edges on the principal component trees, then it may be possible to compare the

ARI scores of PCA and MDS methods. Note that, for a given number of treelines,

the number of edges on the principal component trees may differ on each replication.

Hence, we provide the average number of edges on principal component trees. Be

aware that in Chapter 4, 100 trees are generated for each group of trees, and tkmV EO

is used for clustering while the number of trees is 25, and tkmGED is used in this

chapter.

To compare the performances of PCA and MDS methods, we choose the instance

with h = 5, the skewness level Too Left and the pair of density levels (0.5-0.1). In

this instance, the performances of PCA and MDS methods can be found in Figures

5.1-(c) and 7.1-(c), respectively. It can be seen from the figures that all methods are

successful in keeping the cluster structure using a few treelines or edges. The mini-

mum number of required treelines to lead 0.95 ARI score are 2, 3, and 5 for VMAX,

SMIN, and DMIN methods, respectively. The corresponding numbers of edges are 8,

12.3, and 17 on average. On the other hand, MDST, MDSTGA, and MDSTGB need

6, 17, and 7 edges for similar results. Therefore, it can be concluded that VMAX,

MDST, and MDSTGB methods performs well in this instance. Among these meth-

ods, the MDS methods are better than the PCA method with a slight difference. It is

reasonable since the MDS methods can select their scaling trees from a less bounded

area.
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CHAPTER 8

CONCLUSION

The increasing need for deeper analyses, measurement capabilities, and data collect-

ing technology result in the collection of complex data sets. Tree-structured data sets,

where the data objects are trees, are one of these complex data sets. The use of such

complex data objects brings in difficulties in data analysis and necessitates the use of

dimension reduction techniques. However, many of the classical dimension reduction

techniques are developed to work with vectors in the Euclidean space. Therefore, in

this thesis, we aim to develop dimension reduction methods for tree-structured data

where the data objects are rooted labeled trees. The classical PCA and MDS are

considered, and their extensions are proposed for tree-structured data.

In PCA for tree-structured data, principal components are taken as the treelines. In

the literature, all studies use distance-based objective functions to find the principal

components. In this study, two methods with variance-based objective functions are

developed. Computational experiments show that the proposed methods are able to

select more informative treelines as principal components.

Since there is no study that uses MDS to project trees in the tree space, the concepts

of MDS for tree-structured data are developed in this study. The edges are considered

as the dimensions in our implementation of the MDS for tree-structured data, and the

aim is to keep the Hamming distances between pairs of trees proportionally close.

For this purpose, an MILP model is proposed, but it is not able to solve medium size

instances to optimality in 1 hour. Therefore two heuristic methods, in which the edges

are greedily selected, are proposed as well. From the computational experiments, it

can be concluded that the proposed backward heuristic is successful in keeping useful

information as high clustering accuracy is achieved with only a fraction of the edges.
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However, since MDST and MDSTGA methods select the common edges of all trees

firstly, they need more edges to achieve high clustering accuracies.

As a future work, different definitions of principal components for trees can be con-

sidered, such as k-treelines or edges, and the proposed PCA methods can be applied

to these new problems. Variance-based PCA methods can be extended for graph-

structured data where the data objects are more general than rooted labeled trees.

Moreover, the second objective function z′ introduced in this thesis can be studied,

and exact & heuristic methods can be developed in future studies.

94



REFERENCES

[1] J. S. Marron and A. M. Alonso, “Overview of object oriented data analysis,”

Biometrical Journal, vol. 56, no. 5, pp. 732–753, 2014.

[2] B. Aydın, G. Pataki, H. Wang, E. Bullitt, J. S. Marron, et al., “A principal

component analysis for trees,” The Annals of Applied Statistics, vol. 3, no. 4,

pp. 1597–1615, 2009.

[3] X. Chen, Y. Fang, M. Yang, F. Nie, Z. Zhao, and J. Z. Huang, “Purtreeclust: A

clustering algorithm for customer segmentation from massive customer trans-

action data,” IEEE Transactions on Knowledge and Data Engineering, vol. 30,

no. 3, pp. 559–572, 2017.

[4] H. Wang, J. Marron, et al., “Object oriented data analysis: Sets of trees,” The

Annals of Statistics, vol. 35, no. 5, pp. 1849–1873, 2007.

[5] D. Dinler, M. K. Tural, and N. E. Ozdemirel, “Centroid based tree-structured

data clustering using vertex/edge overlap and graph edit distance,” Annals of

Operations Research, vol. 289, no. 1, pp. 85–122, 2020.

[6] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” Jour-

nal of the American Statistical association, vol. 66, no. 336, pp. 846–850, 1971.

[7] S. R. Aylward and E. Bullitt, “Initialization, noise, singularities, and scale in

height ridge traversal for tubular object centerline extraction,” IEEE transac-

tions on medical imaging, vol. 21, no. 2, pp. 61–75, 2002.

[8] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in space,”

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, vol. 2, no. 11, pp. 559–572, 1901.

[9] H. Hotelling, “Analysis of a complex of statistical variables into principal com-

ponents.,” Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.

95



[10] W. S. Torgerson, “Multidimensional scaling: I. theory and method,” Psychome-

trika, vol. 17, no. 4, pp. 401–419, 1952.

[11] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a non-

metric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27, 1964.

[12] A. M. Bronstein, M. M. Bronstein, and R. Kimmel, “Generalized multidimen-

sional scaling: a framework for isometry-invariant partial surface matching,”

Proceedings of the National Academy of Sciences, vol. 103, no. 5, pp. 1168–

1172, 2006.

[13] C. R. Woese, “Interpreting the universal phylogenetic tree,” Proceedings of the

National Academy of Sciences, vol. 97, no. 15, pp. 8392–8396, 2000.

[14] M. Van Oven and M. Kayser, “Updated comprehensive phylogenetic tree of

global human mitochondrial dna variation,” Human mutation, vol. 30, no. 2,

pp. E386–E394, 2009.

[15] N. Lu and H. Miao, “Clustering tree-structured data on manifold,” IEEE trans-

actions on pattern analysis and machine intelligence, vol. 38, no. 10, pp. 1956–

1968, 2015.

[16] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. Sellis, “Clustering xml docu-

ments using structural summaries,” in International Conference on Extending

Database Technology, pp. 547–556, Springer, 2004.

[17] D. Shen, H. Shen, S. Bhamidi, Y. Muñoz Maldonado, Y. Kim, and J. S. Marron,

“Functional data analysis of tree data objects,” Journal of Computational and

Graphical Statistics, vol. 23, no. 2, pp. 418–438, 2014.

[18] Y. Wang, J. Marron, B. Aydin, A. Ladha, E. Bullitt, and H. Wang, “A nonpara-

metric regression model with tree-structured response,” Journal of the American

Statistical Association, vol. 107, no. 500, pp. 1272–1285, 2012.

[19] A. Flesia, “Unsupervised classification of tree structured objects,” in BIOMAT

2008, pp. 280–299, World Scientific, 2009.

[20] C. A. Alfaro, B. Aydın, C. E. Valencia, E. Bullitt, and A. Ladha, “Dimension

96



reduction in principal component analysis for trees,” Computational Statistics

& Data Analysis, vol. 74, pp. 157–179, 2014.

[21] B. Aydın, G. Pataki, H. Wang, A. Ladha, E. Bullitt, and J. Marron, “New ap-

proaches to principal component analysis for trees,” Statistics in Biosciences,

vol. 4, no. 1, pp. 132–156, 2012.

[22] T. M. Nye et al., “Principal components analysis in the space of phylogenetic

trees,” The Annals of Statistics, vol. 39, no. 5, pp. 2716–2739, 2011.

[23] D. M. Hillis, T. A. Heath, and K. S. John, “Analysis and visualization of tree

space,” Systematic biology, vol. 54, no. 3, pp. 471–482, 2005.

[24] S. Skwerer, E. Bullitt, S. Huckemann, E. Miller, I. Oguz, M. Owen, V. Patrange-

naru, S. Provan, and J. S. Marron, “Tree-oriented analysis of brain artery struc-

ture,” Journal of mathematical imaging and vision, vol. 50, no. 1, pp. 126–143,

2014.

[25] R. W. Hamming, “Error detecting and error correcting codes,” The Bell system

technical journal, vol. 29, no. 2, pp. 147–160, 1950.

[26] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph similarity for

anomaly detection,” Journal of Internet Services and Applications, vol. 1, no. 1,

pp. 19–30, 2010.

[27] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on informa-

tion theory, vol. 28, no. 2, pp. 129–137, 1982.

[28] P. Bendich, J. S. Marron, E. Miller, A. Pieloch, and S. Skwerer, “Persistent ho-

mology analysis of brain artery trees,” The annals of applied statistics, vol. 10,

no. 1, p. 198, 2016.

97


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Literature Review
	Notation and Definition of the Problems
	Principal Component Analysis for Tree-Structured Data
	Principal Component Analysis
	Motivation and Previous Work
	Variance Maximization PCA for Tree-Structured Data
	Similarity Minimization PCA for Tree-Structured Data

	Computational Experiments for PCA Methods for Tree-Structured Data
	The Performances of PCA Methods on Synthetic Data Sets
	A Random Tree Generator
	Computational Experiments on Randomly Generated Tree Sets
	PCA Methods on Density-Different Clusters on Small Trees
	PCA Methods on Density-Different Clusters on Big Trees
	PCA Methods on Skewness-Different Clusters on Small Trees
	PCA Methods on Skewness-Different Clusters on Big Trees


	The Performances of PCA Methods on a Real Data Set
	Computational Experiments on Real Data


	Multidimensional Scaling for Tree-Structured Data
	Multidimensional Scaling
	MDS for Tree-Structured Data - Problem Definition
	Multidimensional Scaling for Tree-Structured Data - Optimization Model
	Multidimensional Scaling for Tree-Structured Data - Greedy Forward Algorithm
	Multidimensional Scaling for Tree-Structured Data - Greedy Backward Algorithm

	Computational Experiments for MDS Methods for Tree-Structured Data
	The Performances of MDS Methods on Synthetic Data Sets
	MDS Methods on Density-Different Clusters on Small Trees
	MDS Methods on Density-Different Clusters on Big Trees
	MDS Methods on Skewness-Different Clusters on Small Trees
	MDS Methods on Skewness-Different Clusters on Big Trees

	The Performances of MDS Methods on a Real Data Set
	Comparison of the Performances of PCA and MDS Methods for Tree-Structured Data

	Conclusion
	REFERENCES

